Lecture 3

Detector Instrumentation

Solid-state detectors

References for this lecture:."Semiconductor Radiation Detectors" by Gerhard Lutz, especially Chapter 2 Intel has a detailed step-by-step video procedure on how silicon chips are fabricated at: http://www.intel.com/pressroom/kits/chipmaking/index.htm?iid=pr1_marqmain_chipmaking

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 3, Page 1 of 27

Quick primer on solid-state physics -

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 3, Page 2 of 27

Bands form due to closely spaced potential wells

Distribution of electrons in energy levels determined by Fermi-Dirac statistics.

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 3, Page 3 of 27

Band gap determines a solid's conductivity

 E_{g} = Band Gap E_{Cmin} – E_{Vmax}

Some properties of semiconductors to remember

An electron tied to the lattice in the valence band can get enough energy to kicked up into the conduction band when:

- > Charged particle deposits energy
- $\propto e^{-}$ Find excitation probability $\alpha e^{i\theta}$ Not Good!

To be used as a detector, number of charge carriers in conduction band due toMIP passage must be *>>* thermally produced charged carriers.

e

k $k_{\scriptscriptstyle B}T$

b

g

E

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 5 of 27

How many carriers in a semiconductor at T_{room} ?

For Silicon

Band Gap Eg= 3.6eV; → thermally generated free charge carriers at 300 K $n_i = B \cdot T^{3/2} exp(-E_g/kT)$ $B = 5.23 \cdot 10^{15} \text{ cm}^{-3} K^{-3/2}$ $k_b T = 8.6 \cdot 10^{-5} \text{ eV} / \text{ }^{\circ} K$ *~ 1.45 x 1010 / cm³*

MIP deposits \sim *33000 e/h pairs signal in 300* μ *m of silicon.*

▲ *at Room temperature for 300µm thick Silicon detector:* $\frac{S}{N}$ ~ 10⁻⁶ **→**

How can we use Silicon as a particle physics detector at room temperature ??

► Need a way to block free charge carriers [→] Doping and PN junctions

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 6 of 27

A PN diode works by blocking free carrier flow

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 3, Page 7 of 27

Adjust the doping and full throttle Reverse Bias

Anatomy of a Silicon strip detector

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 3, Page 9 of 27

http://www.intel.com/pressroom/kits/chipmaking/index.htm?iid=pr1_marqmain_chipmaking

Signal extraction & amplification

- **Bias resistor** • Need to isolate strips from each other to collect/measure charge on each strip \Rightarrow high impedance bias connection (\approx 1M Ω resistor) ■ Coupling capacitor • Couple input amplifier through a capacitor (AC coupling) to avoid large DC input from leakage current I Integration of capacitors and resistors on sensor • Bias resistors via deposition of doped polysilicon • Capacitors via metal readout lines over the implants but
- separated by an insulating dielectric layer (SiO₂, Si₃N₄).

polysilicon resistor

p-strip

- \Rightarrow nice integration
- \Rightarrow more masks, processing steps
- \Rightarrow pin holes

Pictures courtesy of Rainer Wallny, ALICE

Wire Bonding

- Ultrasonic power is used to vibrate needle- \bullet like tool on top of Al wire. Friction welds wire to metallized substrate underneath.
- Pitch: 80 μ m pitch in a single row and 40 μ m \bullet in two staggered rows (typical FE chip pitch is \approx 44 μ m).
- \approx 25µm diameter aluminum wire and bond to \bullet aluminum pads (chips) or gold pads (hybrid substrates).
- Used in industry (PC processors) but not \bullet with such thin wire or small pitch.

Electron micrograph of bond "foot"

Double sided strip detectors

<u>Good:</u> High resolution even with 1-dim readout

(superimpose orthogonal x- n^+ and y- p^+ strips on both sides of the n substrate) $\;\longrightarrow$ 2 n $readout$ $channels$

<u>Bad:</u> Ghost tracks under high occupancy —

(x,y) co-ordinates obtained from successive closely spaced planes of a silicon

are fed into a tracking algorithm that matches themup into a track.

Due to degeneracy along

x and y strip, this can blow up very quickly if there are a large number of particles → *Ghost tracks For resolving secondary decay verticesof short lived particles (eg. Higgs – need to put the detector planes as close to the primarycollision vertex as possible → high occupancy*

People are brave enough to build these

CMS Silicon Strip Detetctor Tracker module

12,000 of these modules go into …

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 14 of 27

CMS Tracker Layout

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 16 of 27

CMS Inner tracker

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 17 of 27

What kind of detector resolution do you get for all that \$\$ and sweat ?

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 18 of 27

I: What is the resolution of a pixel detector?

Consider the simplified case of measurement along 1-dimension

Want: exact location x0 where the particle went through……except don't know the direction the particle came from a priori

So assume a Gaussian distribution for x0 within the pixel

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 19 of 27

I: What is the resolution of a pixel detector?

Consider the simplified case of measurement along 1-dimension

The spatial resolution in dimension x is then:

$$
\sigma_x^2 = \int_{-p/2}^{+p/2} \frac{x^2}{p} dx = \frac{p^2}{12}
$$
 or...
$$
\sigma_x = \frac{p}{\sqrt{12}}
$$

Remember this factor: it comes for any quantization of a Gaussian distribution

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 20 of 27

I: What is the resolution of a pixel detector?

Consider the simplified case of measurement along 1-dimension

$$
\sigma_x = \frac{p}{\sqrt{12}} Eg: CMS\text{ inner tracker: } p = 80 \text{ }\mu\text{m} \rightarrow \sigma_x = 23 \text{ }\mu\text{m}
$$

$$
\sigma_x = \frac{p}{\sqrt{12}} Eg: CMS\text{ inner tracker: } p = 80 \text{ }\mu\text{m} \rightarrow \sigma_x = 23 \text{ }\mu\text{m}
$$

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 21 of 27

II. Tracking spatial resolution

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 22 of 27

Why is this important? Need to reconstruct secondary vertex !

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 3, Page 23 of 27

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 25 of 27

General formula for tracking resolution…

- \triangleright *Usually all the* σ_i '*s* are the same
- \triangleright *So smallness of* σ_b *depends mostly on the first term:*
- *try to put the first plane of the detector as close as possible to the interaction (in case of CMS, R1= 4cm ! ^σⁱ ~ 23 µ^m*

Summary

In this lecture:

- \triangleright Principles of operation of semiconductor detectors
- Single-sided and double-sided Silicon strip detectors
- Calculation of detector resolution and secondary vertex determination