Lecture 3

Detector Instrumentation

Solid-state detectors

References for this lecture:. "Semiconductor Radiation Detectors" by Gerhard Lutz, especially Chapter 2 Intel has a detailed step-by-step video procedure on how silicon chips are fabricated at: <u>http://www.intel.com/pressroom/kits/chipmaking/index.htm?iid=pr1_marqmain_chipmaking</u>

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 1 of 27

Quick primer on solid-state physics -

Bands form due to closely spaced potential wells

Distribution of electrons in energy levels determined by Fermi-Dirac statistics.

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 3 of 27

Band gap determines a solid's conductivity

Some properties of semiconductors to remember

(all units in eV)	Diamond	Si	Ge
E_{g}	5.5	1.12	0.66
Average energy needed to produce one e ⁻ /h pair	13	3.6	2.9

An electron tied to the lattice in the valence band can get enough energy to kicked up into the conduction band when:

- > Charged particle deposits energy
- \succ Thermal excitation probability $\propto e$

To be used as a detector, number of charge carriers in conduction band due to MIP passage must be >> thermally produced charged carriers.

 E_{g}

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 3, Page 5 of 27

How many carriers in a semiconductor at T_{room} ?

<u>For Silicon</u>

Band Gap $E_g = 3.6 eV$; \rightarrow thermally generated free charge carriers at 300 K $n_i = B \cdot T^{3/2} exp(-E_g/kT)$ $B = 5.23 \cdot 10^{15} \text{ cm}^{-3} \text{ K}^{-3/2}$ $k_b T = 8.6 \cdot 10^{-5} \text{ eV/}^{\circ} \text{K}$ $\sim 1.45 \times 10^{10} / \text{ cm}^3$

MIP deposits ~ $33000 e^{-/h}$ pairs signal in $300\mu m$ of silicon.

 \clubsuit at Room temperature for 300µm thick Silicon detector: <u>S/N ~ 10⁻⁶ \otimes </u>

How can we use Silicon as a particle physics detector at room temperature ??

► Need a way to block free charge carriers \rightarrow **Doping and PN junctions**

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 6 of 27

A PN diode works by blocking free carrier flow

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 3, Page 7 of 27

Adjust the doping and full throttle Reverse Bias

Anatomy of a Silicon strip detector

http://www.intel.com/pressroom/kits/chipmaking/index.htm?iid=pr1_marqmain_chipmaking

Signal extraction & amplification

- Bias resistor
- Need to isolate strips from each other to collect/measure charge on each strip
 ⇒ high impedance bias connection (≈ 1MΩ resistor)
- Coupling capacitor
- Couple input amplifier through a capacitor (AC coupling) to avoid large DC input from leakage current
- Integration of capacitors and resistors on sensor
- Bias resistors via deposition of doped polysilicon
- Capacitors via metal readout lines over the implants but separated by an insulating dielectric layer (SiO₂,Si₃N₄).

- \Rightarrow nice integration
- \Rightarrow more masks, processing steps
- \Rightarrow pin holes

Pictures courtesy of Rainer Wallny, ALICE

Wire Bonding

- Ultrasonic power is used to vibrate needlelike tool on top of Al wire. Friction welds wire to metallized substrate underneath.
- Pitch: 80µm pitch in a single row and 40µm in two staggered rows (typical FE chip pitch is ≈44µm).
- ≈25µm diameter aluminum wire and bond to aluminum pads (chips) or gold pads (hybrid substrates).
- Used in industry (PC processors) but not with such thin wire or small pitch.

Electron micrograph of bond "foot"

Double sided strip detectors

<u>Good</u>: High resolution even with I-dim readout

(superimpose orthogonal x- n^+ and y- p^+ strips on both sides of the *n* substrate) $\rightarrow 2n$ readout channels

<u>Bad</u>: Ghost tracks under high occupancy –

(x,y) co-ordinates obtained from successive closely spaced planes of a silicon

are fed into a tracking algorithm that matches them up into a track.

Due to degeneracy along

x and y strip, this can blow up very quickly if there are a large number of particles \rightarrow Ghost tracks For resolving secondary decay vertices of short lived particles (eg. Higgs – need to put the detector planes as close to the primary collision vertex as possible \rightarrow high occupancy

People are brave enough to build these

CMS Silicon Strip Detetctor Tracker module

12,000 of these modules go into ...

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 3, Page 14 of 27

CMS Tracker Layout

CMS Inner tracker silicon detector

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 16 of 27

CMS Inner tracker

Pradeep Sarin, IIT Bombay, ESERC School, June 2011, Lecture 3, Page 17 of 27

What kind of detector resolution do you get for all that \$\$ and sweat ?

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 18 of 27

I: What is the resolution of a pixel detector?

Consider the simplified case of measurement along 1-dimension

Want: exact location x_0 *where the particle went through* *except don't know the direction the particle came from a priori*

So assume a Gaussian distribution for x_0 within the pixel

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 19 of 27

I: What is the resolution of a pixel detector?

Consider the simplified case of measurement along 1-dimension

The spatial resolution in dimension x is then:

$$\sigma_x^2 = \int_{-p/2}^{+p/2} \frac{x^2}{p} dx = \frac{p^2}{12} \qquad or... \qquad \sigma_x = \frac{p}{\sqrt{12}}$$

Remember this factor: it comes for any quantization of a Gaussian distribution

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 20 of 27

I: What is the resolution of a pixel detector?

Consider the simplified case of measurement along 1-dimension

$$\frac{P}{\sqrt{12}}$$
 i.e. resolution less than the pitch

II. Tracking spatial resolution

Why is this important ? Need to reconstruct secondary vertex !

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 23 of 27

Pradeep Sarin, IIT Bombay, ESERC School , June 2011, Lecture 3, Page 24 of 27

General formula for tracking resolution...

- \blacktriangleright Usually all the σ_i 's are the same
- So smallness of σ_b depends mostly on the first term:
- → try to put the first plane of the detector as close as possible to the interaction (in case of CMS, $R_1 = 4$ cm ! $\sigma_i \sim 23 \mu m$

Summary

In this lecture:

- > Principles of operation of semiconductor detectors
- > Single-sided and double-sided Silicon strip detectors
- > Calculation of detector resolution and secondary vertex determination