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Lecture 3
Detector Instrumentation
Solid-state detectors

References for this lecture:.
“Semiconductor Radiation Detectors” by Gerhard Lutz, especially Chapter 2
Intel has a detailed step-by-step video procedure on how silicon chips are fabricated at:
http://www.intel.com/pressroom/kits/chipmaking/index.htm?iid=pr1_marqmain_chipmaking
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Quick primer on solid-state physics - 1

GAS

Atoms move around (T)
� so inter-atomic distance large

� Individual atoms have discrete 
energy levels – electrons fill these up.

� Inner shell electrons are closely bound to
their ‘parent’ atoms – hard to multiply 

ionize a gas atom!

SOLID
� Metal Conductor
� All atoms ionized

What holds the crystal structure together?
� Electrons are the glue

� Since electrons are free to move,
applied field produces electric current.

Physics
QM, energy levels of 

atom are discrete.
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When two atoms are close together 
energy levels split.

If  there are a large number of 
atoms the discrete levels form a 
continuous  “band”.
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Bands form due to closely spaced potential wells
Conduction Band

Valence Band
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Band gap Eg

Distribution of electrons in energy levels determined by Fermi-Dirac statistics.
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Band gap determines a solid’s conductivity
Distribution of electrons in energy 

levels determined by Fermi-
Dirac statistics.
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Electrons in the Ec ‘conduction’ energy
level band are free to roam

0

EvEC

Eg= Band Gap ECmin – EVmax

We will focus on Semiconductors: Diamond, Silicon and Germanium

~ 100 MeV*
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Some properties of semiconductors to remember

2.93.613Average energy needed to produce one e-/h pair

0.661.125.5Eg
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An electron tied to the lattice in the valence 
band can get enough energy to kicked up 
into the conduction band when:

� Charged particle deposits energy

� Thermal excitation probability Not Good !

To be used as a detector, number of charge carriers in conduction band due to
MIP passage must be >> thermally produced charged carriers.
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How many carriers in a semiconductor at Troom?
For Silicon

Band Gap Eg= 3.6eV;
→ thermally generated free charge carriers at 300 K

ni= B · T3/2 exp( -Eg/kT)

B = 5.23 · 1015 cm-3 K-3/2                  kbT = 8.6 · 10-5 eV/ ◦K
~ 1.45 x 1010 / cm3

MIP deposits ~ 33000 e-/h pairs signal  in 300µm of silicon.

� at Room temperature for 300µm thick Silicon detector:  S/N ~ 10-6  ����

How can we use Silicon as a particle physics detector at room temperature ??

► Need a way to block free charge carriers → Doping and PN junctions
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A PN diode works by blocking free carrier flow

Depletion Zone at junction blocks flow of carriers across junction
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Conducts →

Diode I-V characteristic

We are more 
interested in 
Reverse Bias

We are more 
interested in 
Reverse Bias
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Adjust the doping and full throttle Reverse Bias

Zone without free charge carriers 
Sensitive Detector Volume.
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Detector is depleted.

Thin p-type
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Anatomy of a Silicon strip detector

Reverse Bias Voltage V ~ 100 V

300 µm

SiO2 insulator

Fully depleted, 
Reverse biased
~ no free charge
at T=300 K

~ 50 – 150 µm

MIP deposits about 33000 e-/h pairs 
→ position resolution down to 5µm possible
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For a detailed video of how this is done, see the Intel website:
http://www.intel.com/pressroom/kits/chipmaking/index.htm?iid=pr1_marqmain_chipmaking

Title
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Signal extraction & amplification
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Title

Pictures courtesy of Rainer Wallny, ALICE



Pradeep Sarin, IIT Bombay, ESERC School , June 2011,  Lecture 3, Page 13 of  27

Double sided strip detectors
Good: High resolution even with 1-dim readout 

(superimpose orthogonal x- n+ and y- p+ strips on both sides of the n substrate) 

Bad: Ghost tracks under high occupancy –

(x,y) co-ordinates obtained from successive closely spaced planes of a silicon 
are fed into a tracking algorithm that matches them 
up into a track. 
Due to degeneracy along
x and y strip, this can blow up very quickly if there are  
a large number of particles  → Ghost tracks
For resolving secondary decay vertices
of short lived particles (eg. Higgs – need to
put the detector planes as close to the primary

collision vertex as possible → high occupancy

→2n readout channnels

X

Y
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People are brave enough to build these
CMS Silicon Strip Detetctor Tracker module 

APV25 Amplifier
Chip

HV Supply

12,000 of these modules go into …
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CMS Tracker Layout
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CMS Inner tracker silicon detector
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CMS Inner tracker

445 m2 Si
~ 60 x 106 channels
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What kind of detector resolution do you get
for all that $$ and sweat ?
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I: What is the resolution of a pixel detector?
Consider the simplified case of  measurement along 1-dimension

p

path of  particle

xx0

Want: exact location x0 where the particle went through
……except don’t know the direction the particle came from a priori

So assume a Gaussian distribution for x0 within the pixel 

Pixel pitch
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I: What is the resolution of a pixel detector?
Consider the simplified case of  measurement along 1-dimension

p

path of  particle

xx0

The spatial resolution in dimension x is then:
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Remember this factor: it comes for any quantization of a Gaussian distribution
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I: What is the resolution of a pixel detector?
Consider the simplified case of  measurement along 1-dimension

p

path of  particle

xx0

12

p
x =σ

Eg: CMS inner tracker: p = 80 µm→ σx = 23 µm
i.e. resolution less than the pitch
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II. Tracking spatial resolution

p2

x
σx2

p3

x
σx3

p0

x
σx0

p1

x
σx1

particle track
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Why is this important ?
Need to reconstruct secondary vertex !

Need to resolve B:
How long a particle (Higgs?) produced in
the primary collision travels before it decays.
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Question for Tea:
What is σb as function of R1,R2,σ1,σ2?

You may take σ1=σ2= σd
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A simple analysis gives a simple answer:
Case 1: Set σ2 = 0
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General formula for tracking resolution…
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� Usually all the σi’s are the same
� So smallness of σb depends mostly on the first term:
� try to put the first plane of the detector as close as possible to the interaction

(in case of CMS, R1= 4cm !σi ~ 23 µm

“multiple scattering”
term for very low energy
tracks at shallow angle

“multiple scattering”
term for very low energy
tracks at shallow angle
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Summary

In this lecture:

� Principles of operation of semiconductor detectors

� Single-sided and double-sided Silicon strip detectors

� Calculation of detector resolution and secondary vertex determination


