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• Stellar reaction rates 

     

     - for direct neutron capture

     - for direct charged induced reactions

     - for direct charged particle reactions

 

     - for resonant reactions 

• Additional effects on reaction rate in stellar environment   

  

Plan of lecture II Plan of lecture II 
    



  Ni = number density
Total reaction rate                                                          reactions cm-3 s-1

Energy production rate:       aX = RaX QaX

to be determined from experiments and/or theoretical considerations

as star evolves, T changes     evaluate <v> for each temperature

<v> = KEYquantityenergy production
as star evolves

change in abundance
of nuclei X

Mean lifetime of nuclei X 

against destruction by nuclei a

  

Thermonuclear Reaction Rates:            Reminder
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 The cross section as a function of energy (velocity)

The stellar reaction rate can then be calculated by integrating over the Maxwell 
Boltzmann distribution.

The cross section depends sensitively on the reaction mechanism and 
the properties of the nuclei involved. It can vary by many (tens) orders of magnitude.
It can either be measured experimentally or calculated. Both are difficult..

There is no nuclear theory that can predict the relevant properties of nuclei accurately 
enough. In practice, a combination of experiments and theory is needed

Typical energies for astrophysical reactions are of the order of kT

Sun     T ~ 15 MK 

Si burning in a massive star: T ~ 1 GK

  

What is needed to determine thermonuclear reaction rates? 
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Direct transition from initial state |a+A> to final state <f| (some state in B)  

a + A  B + 
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Interaction matrix
element

Penetrability: probability
for projectile to reach 
the target nucleus for
interaction. 
Depends on projectile
Angular momentum l
and Energy E
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Thermonuclear Reaction Rates:        Non-resonant (Direct) reactions 
    



• As the cross section for s-wave (l = 0) neutron 
capture can be written

   the most probable capture energy is ~kT
v
1

  vconstv 

Thermal neutron cross section:

Many neutron capture cross sections have been measured at reactors using a 
“thermal” (room temperature) neutron energy distribution at T= 293.6 K (20 0C), 
kT=25.3 meV
The measured cross section is an average over the neutron flux spectrum (E) used:
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Stellar Reaction Rates for s-wave direct neutron capture  
    



Why is a flux of thermalized particles distributed as kT

E

EE


 e)( ?

The number density n of particles in the beam is Maxwell Boltzmann (MB) distributed

kTEE
dE

dn /e

BUT the flux is the number of neutrons hitting the target per second and area. This is 
a current density j = n * v 

 kTEE
dE
dn

dE
dj /ev 

The cross section is averaged over the neutron flux

Same situation than in the center of a star. The number density of particles is M.B. 
distributed, but the number of particles passing through an area per second
is                          distributed & so is the stellar reaction ratekTEE /e



For s-wave neutron capture one can relate the thermal cross section to the 
cross section value at the energy kT
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for reactor neutrons (thermal neutrons)  vT=2.2105cm/s
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that’s usually tabulated as
“thermal cross section”

With these definitions one can show that the measured averaged cross section
and the stellar reaction rate are related simply by

  

Stellar Reaction Rates for s-wave direct neutron capture 
    



The penetrability scales with 

l
l EEP  2/1)(

and therefore the cross section:

2/1 lE

for l>0    with E (centrifugal barrier)

•s-wave capture dominates at low energies, 
in particular at thermal energies. 

•Higher l-capture usually plays only a role 
at higher energies. 

  

Stellar Reaction Rates for direct neutron capture with higher l 
    

For neutron capture, the only barrier is the angular 
momentum barrier p-wave capture in 14C(n,)15C

Note: sometimes s-wave is strongly suppressed because of angular momentum selection rules (as 
it would then require higher gamma-ray multipolarities)
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This depends on cross section shape and temperature:

s-wave n-capture:

The energy range the cross section needs to be known to determine the stellar reaction 
rate for n-capture ?
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Example: kT=10 keV

M.B. distribution (E)

(E)

(E) (E) E = E1/2 exp(-E/kT) 
relevant for stellar reaction rate

of the order of KT (somewhat lower than MB distribution)

  

Stellar Reaction Rates for direct neutron capture



p-wave n-capture:
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Example: kT=10 keVM.B. distribution (E)

(E)

(E) (E) E = E3/2exp(-E/kT)
relevant for stellar reaction rate

of the order of KT (close to MB distribution)

  

Stellar Reaction Rates for direct neutron capture



The concept of the astrophysical S-factor (for n-capture)

recall:
2
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AaHfEP
E l 

“trivial” strong
energy
dependence

“real” nuclear physics
weak energy dependence
(for direct reactions !)

S-factor concept: write cross section as 

strong “trivial” energy dependence        weakly energy dependent S-factor

The S-factor can be 
• easier graphed
• easier fitted and tabulated
• easier extrapolated
• and contains all the essential nuclear physics

  

Stellar Reaction Rates for direct neutron capture



For neutron capture with strong s-wave dominance with corrections. 
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

in practice, these are tabulated fitted parameters

typical S(E) units with this definition: barn MeV1/2

  

Stellar Reaction Rates for direct neutron capture
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Astrophysical reaction rate

For pure s-wave capture

)0(v S

for pure s-wave capture the S-factor is entirely determined by the thermal 
cross section measured with room temperature reactor neutrons:
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Stellar Reaction Rates for direct neutron capture

 vT=2.2105cm/s



15

which leads to a relatively constant
S-factor because of 

E

)(ESE or 
E
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

)(

(typical unit for S(E) is then barn/MeV1/2)

S-factor

For neutron capture that is dominated by p-
wave: one can define a p-wave S-factor:

  

Stellar Reaction Rates for direct neutron capture



  

Stellar Reaction Rates for direct charged particle reactions  
    

Recall (This lecture & lecture I)
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governs energy 
dependenceMAXIMUM reaction rate: 
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Stellar Reaction Rates:             Gamow peak (relevant energy range)
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Examples:  T ~ 15106 K (T6=15)      kT=1.34 keV

separate stages: H-burning

He-burning

C/O-burning 

…

area of Gamow peak 
(height width) ~ <v> 

E0 = f(Za, ZX, T)

STRONG sensitivity 

to Coulomb barrier

depends on reaction and/or temperature

most effective energy region for thermonuclear reactions Gamow peak:

energy window of astrophysical interest E0 ±  E0/2

  

Stellar Reaction Rates:                             Gamow peak 
    



Reaction rate: 

with S(E0) in keV b : 
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 Imax is strongly dependent of the product 
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Stellar Reaction Rates:                          non-resonant (direct) capture  
    

For non-resonant capture (direct),  one approximates the rate calculation by 
assuming the S-factor is constant over the Gamow Window

(II)



 For many non-resonant reactions S-factor is not a constant & varies with E
      Expand the experimental or theoretical S(E) around E=0 as powers of E to    
          second order:

2)0(''
2
1

)0(')0()( ESESSES 

If one integrates this over the Gamow window in Eq. I, one finds that one can use 
Eq. II by replacing S(E0) with the effective S-factor Seff
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Stellar Reaction Rates:                          non-resonant (direct) capture  
    

F(): the correction factor 
due to the asymmetry 

of the Gamow peak

Corrections due to the S-factor 
variation with energy



Contribution to the reaction rate of a  

resonance at the energy ER near E0:
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Stellar Reaction Rates:                                  Resonant reaction 
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Recall

If in the energy range of interest (Gamow window for charged particle reaction & nearly KT 
for neutron captures)  there is an excited state (or part of it, as states have a width) in the 
Compound nucleus then the reaction rate will have a resonant contribution.

The reaction rate becomes extremely sensitive to the properties of the resonant state
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Stellar Reaction Rates:                                               Resonant reaction
    

 Maxwell-Boltzmann distribution ~ cst

• If the i are constants over  << ER :  

 is the strength of the 
resonance

The case of a narrow resonance  <<ER  

 The resonance energy must be “near” the 
relevant energy range E to contribute to 
the stellar reaction rate.



  

Stellar Reaction Rates:                                               Resonant reaction
    

The case of a narrow resonance  <<ER  

For the contribution of a single narrow resonance to the stellar reaction rate:
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The rate is entirely determined by the “resonance strength”: 
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And reaction rate is determined by the smaller one of the widths !



The case of broad resonances  ~ ER

  

Stellar Reaction Rates:                                               Resonant reaction
    

 Partial and total widths depend sensitively on the decay energy. Therefore:
• widths depend sensitively on the excitation energy of the state
• widths for a given state are energy-dependent

(they are NOT constants in the Breït-Wigner Formula)

Particle widths: 2)(2 ala EP 
“reduced width” contains the nuclear physicsPenetrability: 

Main energy dependence (calculated)

Photon widths:
12)(  lElB  Reduced matrix element
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The case of broad resonances  ~ ER

  

Stellar Reaction Rates:                                               Resonant reaction
    

A simple caseRate of reaction through the wing of a broad resonance

 Resonances outside the energy window for the reaction can contribute through 
their wings

Assume b= const & =const
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Resonance parameters:

J=1/2+           ER=0.42 MeV

 = 0.50  0.04 eV

 = 31.7  0.8 keV    = p

Burning conditions:

T6=20           E0= 29 keV

CNO-cycle (main sequence, M =2 M)

T9= 0.4     E0= 213 keV

 Hot CNO-cycle (Novae) 

  

Example of resonant reaction
    

12C(p,)13N :  Proceeds mainly through tail of 0.46 MeV resonance



 Far from the resonance the contribution from wings has a similar energy dependence
than the direct reaction mechanism.

 In particular, for s-wave neutron capture there is often a 1/v contribution at thermal energies 
through the tails of higher lying s-wave resonances.

 Therefore, resonant tail contributions and direct contributions to the reaction rate can be 
parametrized in the same way (for example S-factor). Tails and DC are often mixed up in the 
literature.

 Though they look the same, direct and resonant tail contributions are different things:

• in direct reactions, no compound nucleus forms
• resonance contributions can be determined from resonance properties measured
  at the resonance, far away from the relevant energy range
  (but need to consider interference !)

  

Stellar Reaction Rates:                                               Resonant reaction
    

Rate of reaction through the wing of a broad resonance (Summary)



18F(p,)15O   (nova nucleosynthesis)

  

Stellar Reaction Rates:                                                           Summary
    

The stellar reaction rate of a nuclear reaction is determined by the sum of
• sum of direct transitions to the various bound states

• sum of all narrow resonances in the relevant energy window

• tail contribution from higher lying resonances or sub-threshold resonances

tailsi Res;i stateDC    vvvv
ii



Caution: 

Interference effects are possible 
(constructive or destructive addition) 

among:

•Overlapping resonances with same 
      quantum numbers

•Same wave direct capture and  
      resonances 



Herndl et al. PRC52(95)1078)

Direct

Res.

Sp=3.34 MeV

Resonance 
strengths

  

Example of non-resonant and resonant reaction 
    

Strong energy 
dependence

of proton width

Weak changes 
in gamma width



The Gamow window moves to 
higher 
energies with increasing temperature
 
  different resonances play a role 
     at different temperatures.

Gamow Window:

0.1 GK: 130-220 keV
0.5 GK: 330-670 keV
1GK: 500-1100 keV

  

Example of non-resonant and resonant reaction 
    



• If a resonance is in or near the Gamow window it tends to dominate
  the reaction rate by orders of magnitude

• As the level density increases with excitation energy in nuclei, higher
  temperature rates tend to be dominated by resonances, lower
  temperature rates by direct reactions.

• As can be seen from the reaction rate equation for narrow resonance, 
   the reaction rate is extremely sensitive to the resonance energy. 
   For p-capture this is due to  the exp(ER/kT) term AND p(E) (Penetrability) !

As Er=Ex-Q one needs accurate excitation energies and masses !

  

Stellar reaction rates:                                                  Other Remarks



Beyond temperature and density, there are additional effects related to the extreme 
stellar environments that affect reaction rates.

In particular, experimental laboratory reaction rates need a (theoretical) correction
to obtain the stellar reaction rates.

The most important two effects are:

1. Thermally excited target

2. Electron screening

At the high stellar temperatures photons can excite the target. Reactions on excited 
target nuclei can have different angular momentum and parity selection rules and have 
a somewhat different Q-value.

Atoms are fully ionized in a stellar environment, but the electron gas still shields the 
nucleus and affects the effective Coulomb barrier.

Reactions measured in the laboratory are also screened by the atomic  electrons, but 
the screening effect is different (see lecture III).

  

Stellar reaction rates:                Complications in stellar  
environment
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Ratio of nuclei in a thermally populated excited state to nuclei in the ground state is given 
by the Saha Equation:

)12(  Jg

Ratios of order 1 for Ex~kT

In nuclear astrophysics, kT=1-100 keV, which is small compared to typical level spacing 
in nuclei at low energies (~ MeV). 

 usually only a very small correction, but can play a role in some cases:
• a low lying (~100 keV) excited state exists in the target nucleus
• temperatures are high
• the populated state has a very different rate (for example due to very different   
   angular momentum or parity or if the reaction is close to threshold and the slight 
  
   increase in Q-value ‘tips the scale’ to open up a new reaction channel)

The correction for this effect has to be calculated. NACRE compilation gives a correction.

  

Stellar reaction rates:                         Thermally excited target nuclei



The nuclei in an astrophysical plasma undergoing nuclear reactions are  fully ionized.

However, they are immersed in a dense electron gas, which leads to some shielding of the 
Coulomb repulsion  between projectile and target for charged particle reactions.

Charged particle reaction rates are therefore enhanced in a stellar plasma, compared to 
reaction rates for bare nuclei.

The Enhancement depends on the stellar conditions

)()(
2

21 rU
r

eZZ
rV 

Bare nucleus
Coulomb

Extra
Screening
potential

(attractive
so <0)

(Clayton Fig. 4-24)
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Screening factor f definition:

barescreened vv   f

Case 1: Weak Screening

Average Coulomb energy between ions << thermal Energy

kT
n

Ze
 3/1

22

(for a single dominating species)

Means: • high temperature
• low density

(typical for example for stellar hydrogen burning)

Definition of weak screening regime:
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For weak screening, each ion is surrounded by a sphere of ions and electrons that are somewhat 
polarized by the charge of the ion (Debeye Huckel treatment)

Then potential around ion Dr/R
1 e)( 

r

eZ
rV

Exp: Quicker drop off
due to screening

224  A
D Ne

kT
R   

i
ieii YZZ )( 2With

So for r>>RD complete screening

More positive ions

More electrons

Ion under
consideration

RD

Debye Radius 
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In weak screening regime, RD >> (R0-R)

But effect on barrier penetration and reaction rate only for potential between R and 
classical turning point R0

And therefore one can assume U(r) ~ const ~ U(0). 
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So to first order, barrier for incoming projectile:

In other words, we can expand V(r) around r=0:

DR

ZZe

r

ZZe
rVeZrV 21

2
21

2

12 )()( 









 ...

2
1)(

2

2
1

1
DD R

r

R

r

r

eZ
rV

To first order

Comparison with )()(
2

21 rU
r

eZZ
rV 

Yields for the screening potential:
DR

ZZe
UUrU 21

2

0)0()( 
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These 2 equations describe a corrected Coulomb barrier for the astrophysical 
environment. 



One can show, that the impact of the correction on the barrier penetrability and 
therefore on the astrophysical reaction rate can be approximated through a 
screening factor f:

kTf /U0e

In weak screening U0 << kT and therefore
kT

U
f 01

Summary weak screening:

barescreened  vfv 

DR

ZZe
U 21

2

0 

2/3
6

2/1
21188.01  TZZf 

 
i

ieii YZZ )( 2
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Other cases:

Average coulomb energy larger than kT – for high densities and low temperatures
Again simple formalism available, for example in Clayton

Strong screening:

Intermediate screening:

Average Coulomb energy comparable to kT – more complicated but formalisms
available in literature
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