Power spectrum of flow fluctuations

P. S. Saumia

Institute Of Mathematical Sciences Chennai, India.

3 Feb 2015

P. S. Saumia (IMSc) [Power spectrum of flow fluctuations](#page-17-0) **Prover Section 1/18** Power spectrum of flow fluctuations

 299

4 (D) 3 (F) 3 (F) 3 (F)

Outline

[Introduction](#page-2-0)

[Inflationary density fluctuations and flow fluctutaions](#page-4-0)

[Power spectra](#page-8-0)

- [Effect of magnetic field on flow](#page-11-0)
- 5 [Summary and Conclusions](#page-15-0)

E.

- Inhomogeneities of all scales are present in the initial state energy density distribution in heavy-ion collisions.
- We argued that these inhomogeneities will generate flow fluctuations, both even and odd, for harmonics upto, say $n = 30$.
- It is important to calculate the root-mean-square values of these flow fluctuations than the averages.
- A plot of the rms values of the Fourier transforms of the flow fluctuations $v^{\textit{rms}}_{\textit{n}}$ vs. *n* will contain important information about the initial state fluctuations and their evolution.

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

Initial energy density for *Pb* − *Pb* collision at 200 GeV/*A*

Þ

×. ъ QQ

4 ロ ト 4 何 ト 4 ヨ ト

- These density fluctuations are similar to the density fluctuations in the early universe which leave their imprints in the cosmic microwave background radiation as temperature fluctuations.
- Inflationary density fluctuations are present on all scales and after inflation, the scales larger than the horizon scale 'enter' the horizon, the shortest scale first and evolve.
- In heavy-ion collisions, thermalisation happens in less than a fm/*c*. The system has fluctuations of orders larger than this thermalisation scale, all the way upto the system size.

 $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$ $\mathbf{A} \oplus \mathbf{B}$

- **•** These energy density fluctuations grow into momentum anisotropies, the shortest modes first. The higher harmonics grow first. Elliptic flow being the largest mode will grow to it maximum last.
- The relevant scale one should compare with the modes is the acoustic horizon at a given time.
- The larger modes like elliptic flow may not completely grow to the corresponding momentum anisotropy before freeze-out.

- We have argued that the growth of a spatial fluctuation to the corresponding momentum fluctuation will depend on the size of the mode compared to the acoustic horizon scale.
- Thus the elliptic mode of spatial eccentricity in smaller systems should grow faster compared to that in larger systems if the thermalisation time scales are similar.

Growth of ϵ_p/ϵ_x for systems of different size. Smooth Glauber initial conditions are used.

- Another important aspect of inflationary density fluctuations is the acoustic oscillations. The over/under densities which enter the horizons grow and oscillate acoustically.
- We have argued that the sub-horizon modes density fluctuations in heavy-ion collisions also should display an oscillatory behavior.
- Following CMBR fluctuation analysis, a natural observable to look at would be the Fourier co-efficients of the azimuthal anisotropies in the final particle momenta in a given rapidity bin. (CMBR anisotropic fluctuations are studied by expanding them in spherical harmonics.)
- We study the Fourier co-efficients of the azimuthal anisotropy of momenta given by $\frac{p(\phi)-p_{\textit{av}}}{p_{\textit{av}}}$.

イロト イ押 トイラト イラト

CMB angular power spectrum

重

- b

4 ロト 4 何ト

 \rightarrow \pm \rightarrow \leftarrow \equiv 298

Relativistic hydrodynamic simulations

Digal, Saumia, Srivastava

Plots of v_n^{rms} vs. *n* for Gaussian fluctuations of width s

Woods-Saxon density profile, 2 fm radius with 10 Gaussian fluctuations *s*=0.4,0.8,1.6 (red, blue, green)

Glauber model density profile and fluctuations *Pb* − *Pb*, 200 GeV *s*=0.4,0.8 fm (red,green)

4 0 8 1

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow$

 QQ

Effect of magnetic field on flow

- Presence of magnetic field in the early universe distorts the power spectrum of CMBR. This is due to the complex dependence of magnetosonic waves on magnetic fields and density gradients.
- We studied the effect of magnetic field on flow in heavy-ion collisions.
- In non-central collisions, a large magnetic field is generated during the collisions. The time scale of this field can be several fm due to induced currents in the plasma.
- We argued that this can enhance flow anisotropies. It is interesting to see whether larger values of viscosity can be accommodated in this scenario.

 Ω

(ロトイ部)→(差)→(差)→

- **•** In presence of magnetic field, there are three types of waves in the plasma in place of ordinary sound waves.
- We calculated the flow anisotropies by using the generalised sound waves, the fast magnetosonic waves which have significant contributions from the magnetic pressure.
- The expression of group velocity of the fast magnetosonic waves is given by

$$
v_{gr} = v_{ph} \left[\mathbf{n} + \mathbf{t} \frac{\sigma \pm 2\delta (a \mp (1 + \cos^2 \theta) \sin \theta \cos \theta)}{2(1 + \delta \cos^2 \theta \pm a)a} \right]
$$

$$
\bullet\,\,\delta=\tfrac{c_\mathrm{s}^2v_{\mathrm{A}}^2}{(\frac{4\rho}{3\omega}c_\mathrm{s}^2+v_{\mathrm{A}}^2)},\,\sigma=\tfrac{4c_\mathrm{s}^2v_{\mathrm{A}}^2}{[(\frac{4\rho}{3\omega})c_\mathrm{s}^2+v_{\mathrm{A}}^2]^2},\,\omega=(\tfrac{4\sigma}{3})+B^2
$$

Root-mean square values of flow co-efficients for $b = 10, 8, 6, 2$ fm.

4 0 8 1 \leftarrow \leftarrow \leftarrow \sim 医下半面

Þ

 299

Enhancement of elliptic flow with magnetic field. Mohapatra, Saumia, Srivastava, MPLA26, 2477 (2011).

Subsequent analysis by Tuchin: Results in agreement with this K. Tuchin, J.Phys. G 39, 025010 (2012)

 Ω

 \overline{AB}

Summary and Conclusions

- The first peak contains information about the freezeout stage, and the dominant scale of fluctuations.
- We plot v_n up to $n = 30$, which corresponds to wavelength of fluctuation of order 1 fm. There will be some scale (probably less than 1 fm) below which hydrodynamics breaks down. A changeover in the plot of *vⁿ* at some large *n* will indicate applicable regime of hydrodynamics.
- One important factor which can affect the shape and inter-spacings of these peaks, is the nature and presence of the quark-hadron transition.
- Magnetic field leads to complex flow patterns, vorticity generation. There are some interesting results already from MHD. The odd harmonics seem to be suppressed in presence of magnetic field.

 Ω

イロト イ押 トイラト イラト

重

 299

イロト イ部 トイ磨 トイ磨 ト

重

 299

イロトス 伊 トス ミトス ミト