

Energy dependence of moments of net-charge multiplicity distributions in Au+Au collisions at RHIC

Dipak K. Mishra (for PHENIX Collaboration) BARC, Mumbai

Outline

- Introduction
- PHENIX experiment
- Results for moments of net-charge distributions
- Summary/Outlook

Introduction

• At large μ_B \rightarrow Ist order phase transition

• At $\mu_B \sim 0$ \rightarrow crossover from QGP to HG

The end point of the
 Ist order phase Transition
 → Critical end point

Lattice QCD predicts the existence and location of the Critical End Point in the phase diagram.

Introduction ...

- As $T \rightarrow T_c$: approaching critical point
- Susceptibility diverges
- Correlation length (ξ) diverges
 - ξ ~ system size

• Heavy ion collisions that pass close to a QCD critical point might demonstrate observable with large fluctuations in correlation lengths (ξ) of particular global variables like: total charge, net-charge.

Relation to experimentally measured quantity

- The correlation length (ξ) is related to the various moments of conserved quantities: *net-baryon, net-charge, net-strangeness*
 - Variance : $\sigma^2 = \langle (\Delta N)^2 \rangle \sim \xi^2$ where $\Delta N = N \langle N \rangle$ Skewness: $S = \langle (\Delta N)^3 \rangle / \sigma^3 \sim \xi^{4.5}$ $\langle N \rangle =$ MeanKurtosis: $\kappa = \langle (\Delta N)^4 \rangle / \sigma^4 3 \sim \xi^7$
- Higher moments are sensitive to non-Gaussian nature \rightarrow amplify the signal.

Since the correlation length is expected to diverge at the CP, S σ and $\kappa\sigma^2$ will show large deviation.

Theoretical model

Fluctuations of conserved quantities related to thermodynamic susceptibilities Lattice QCD and Hadron Resonance Gas (HRG) model

Dipak Mishra; ICPAQGP-2015

How to probe

By systematically varying the beam energy in heavy ion collisions will be able to probe different regions of the QCD phase diagram.

Look for the non-monotonic variations of higher moments of conserved quantity distributions as a function of energy

PHENIX detector at RHIC

Global Detectors:

- BBC $(3.0 < |\eta| < 3.9)$
- ZDC (|η| > 6)
- RXNP (1.0<|η|<1.5 [inner]

(1.5<|η|<2.8 [outer])

Central Arm Detectors :

- DC, PC1, PC2, PC3
- RICH
- ToF
- EmCal

Hadrons, photons, electrons

- |η| < 0.35
- Pe > 0.2 GeV/c
- Δφ = π (2 arms x π/2)

Forward rapidity arms: Muons

- 1.2< $|\eta| < 2.2$
- $p \mu > 1 \, GeV/c$
- $\Delta \phi = 2 \pi$

RHIC Beam energy scan program

क्ता सेवा में प्रत

Net-charge distribution

Distributions are not corrected for efficiency and acceptance Data covers several orders of magnitude Distributions are symmetric around zero

Dipak Mishra; ICPAQGP-2015

Moments of the distribution

Efficiency uncorrected moments.

Centrality dependence of product of moments

• σ^2/M increase with centrality

• So and $\kappa\sigma^2$ have very weak centrality dependence

Data vs model comparison

σ^2/M

•increase with increase in colliding energies

- Follows the HRG predictions for all the energies
- Comparable with the model predictions

Sσ

Increase with decreasing colliding energy
Comparable with the model predictions
At lower energies experimental values are lower than HRG predictions.

$\kappa\sigma^2$

- No energy dependence and below the HRG predictions
- Comparable with the model predictions
 except for highest energy point

Centrality and energy dependence

Summary

- Fluctuation of net-charge have been measured at different √s_{NN}
- Moments of net-charge
 - σ²/M increase with colliding energies
 - Sσ values increase with decreasing energies
 - $\kappa\sigma^2$ is independent of colliding energies
- No significant deviation observed in data.

19.6 and 27 GeV results will be available soon