Effects of magnetic field on chiral symmetry breaking and CP violation

Bhaswar Chatterjee

Centre for Nuclear Theory Variable Energy Cyclotron Centre

ICPAQGP 2015, 03/02/15

¹ Symmetries of QCD allows a parity violating topological term in the Lagrangian

$$
\mathcal{L}_{QCD}^{\theta} = \mathcal{L}_{QCD}^{\theta=0} + \mathcal{L}^{\theta} = \mathcal{L}_{QCD}^{\theta=0} + \frac{\theta}{64\pi^2} g^2 F_{\mu\nu}^a \tilde{F}^{a\mu\nu}.
$$

2 Axial anomaly

$$
\partial^{\mu} J_{\mu 5}^{f} = 2m_f i \bar{\psi}_f \gamma_5 \psi_f + \frac{N_f g^2 \theta}{32\pi^2} F_{\mu\nu}^a \tilde{F}^{a\mu\nu}.
$$

3 Electric dipole moment of neutron sets an upper bound

$$
|\theta|<0.7\times10^{-11}.
$$

⁴ Strong CP problem

Introduction and Motivation

- **1** Parity violation is forbidden in vacuum for $\theta = 0 \implies$ Vafa-Witten Theorem.
- 2 Parity may be violated for $T, \mu \neq 0$.
- **3** Parity odd degenerate vacuum states are allowed for $\theta = \pi$ \implies Dashen phenomena.
- ⁴ Non perturbative calculation is necessary.
- **5** Heavy ion collision may produce parity odd metastable state.
	- Chiral magnetic effect \implies May be responsible for charge separation observed in STAR.
	- Possibility of excess dilepton production.
- \bullet Magnetic fields can be of the order of 10^{18} Gauss 10^{20} Gauss.

KMT-NJL model

1 The 3-flavor Nambu-Jona Lasinio(NJL) Lagrangian with Kobayashi-Maskawa-t'Hooft(KMT) term is given by

$$
\mathcal{L}_{NJL}^{KMT} = \bar{\psi} i \partial \psi - \bar{\psi} m \psi + \sum_{a=0}^{8} G \left[(\bar{\psi} \lambda_a \psi)^2 + (\bar{\psi} i \lambda_a \gamma_5 \psi)^2 \right] \n+ K \left[e^{-i\theta} \det \bar{\psi}_i (1 - \gamma_5) \psi_j + h.c \right] \n= \mathcal{L}_{NJL} + \mathcal{L}_{KMT}.
$$

2 The axial anomaly equation becomes

$$
\partial^{\mu}J_{\mu 5}=2mi\bar{\psi}\gamma_{5}\psi+2iN_{f}K\left(e^{-i\theta}det\Phi-h.c\right),
$$

where

$$
\Phi_{ij}=\bar{\psi}_i(1-\gamma_5)\psi_j=2\bar{\psi}_{iR}\psi_{jL}.
$$

つくへ

 \bullet CP violation is embedded in \mathcal{L}_{KMT} .

Dirac Equation in magnetic field

1 The Dirac equation in presence of magnetic field is

$$
(i\partial - qA - m)\psi = 0.
$$

² We choose the magnetic field to be of strength B and along the z direction.

• We choose
$$
A_{\mu} = (0, 0, Bx, 0)
$$
.

4 For $E > 0$, the energy levels are given by

$$
E_n^2 = m^2 + p_z^2 + (2n+1)|q|B - qB\alpha.
$$

5 For $E < 0$, the energy levels are given by

$$
E_n^2 = m^2 + p_z^2 + (2n+1)|q|B + qB\alpha.
$$

 $\alpha = 1$ for spin up and $\alpha = -1$ for spin down.

¹ We take the ground state with quark-antiquark pairs as

 $|\Omega\rangle = U_{II} U_{I} |vac\rangle$

where

$$
U_I = \exp\left[\sum_{n=0}^{\infty} \int d\boldsymbol{p}_x q_r^{i\dagger}(n, \boldsymbol{p}_x) a_{r,s}^i(n, p_z) f^i(n, \boldsymbol{p}_x) \tilde{q}_s^i(n, -\boldsymbol{p}_x) - h.c.\right]
$$

with

$$
a_{r,s}^i = \frac{1}{|\boldsymbol{p}^i|} \left[-\sqrt{2n|q^i|B}\delta_{r,s} - i p_z \delta_{r,-s} \right]
$$

and

$$
U_{II} = \exp \left[\sum_{n=0}^{\infty} \int d\boldsymbol{p}_{\chi} q_{r}^{i \dagger} (n, \boldsymbol{p}_{\chi}) r g^{i} (n, \boldsymbol{p}_{\chi}) \tilde{q}_{s}^{i} (n, -\boldsymbol{p}_{\chi}) - h.c. \right]
$$

つくへ

∍

¹ Expectation value of the scalar and pseudo scalar condensates are

$$
I_{s}^{i} = -\frac{2N_{c}|qB|}{(2\pi)^{2}} \sum_{n=0}^{\infty} \alpha_{n} \int dp_{z} \cos \phi^{i} \cos 2g^{i} (1 - n_{-}^{i} - n_{+}^{i}),
$$

$$
-iI_{p}^{i} = -i\frac{2N_{c}|qB|}{(2\pi)^{2}} \sum_{n=0}^{\infty} \alpha_{n} \int dp_{z} \sin 2g^{i} (1 - n_{-}^{i} - n_{+}^{i}),
$$

where $\alpha_n = 2 - \delta_{n0}$. ϕ_i and g_i are the scalar and pseudoscalar condensate function.

2 The thermodynamic potential is given by

$$
\Omega = T + V - \mu \langle \psi^{\dagger} \psi \rangle - \frac{S}{\beta}
$$

1 Minimization of the thermodynamic potential gives

$$
M_{s}^{i} = m^{i} + 4GI_{s}^{i} + K|\epsilon_{ijk}| \{ \cos \theta (I_{s}^{j}I_{s}^{k} - I_{p}^{j}I_{p}^{k}) - \sin \theta (I_{s}^{j}I_{p}^{k} + I_{p}^{j}I_{s}^{k}) \} M_{p}^{i} = 4GI_{p}^{i} - K|\epsilon_{ijk}| \{ \cos \theta (I_{s}^{j}I_{p}^{k} + I_{p}^{j}I_{s}^{k}) - \sin \theta (I_{p}^{j}I_{p}^{k} - I_{s}^{j}I_{s}^{k}) \}.
$$

• The total mass is
$$
M^i = \sqrt{{M_s^i}^2 + {M_p^i}^2}.
$$

• All these can be obtained by taking $eB = 0$ and using

$$
\int \frac{d\boldsymbol{p}}{(2\pi)^3} \to \frac{|qB|}{(2\pi)^2} \sum_{n=0}^{\infty} \alpha_n \int dp_z.
$$

⁴ The gap equations are to be solved self consistently.

Magnetic catalysis at $T = \mu = 0$, $\theta = 0$.

Bhaswar Chatterjee | [ICPAQGP 2015, Kolkata](#page-0-0)

Magnetic catalysis at $T = \mu = 0$.

 \leftarrow \Box

同

-b \rightarrow Þ.

Ε

∍

B

È

Degenerate states at $T = \mu = 0$.

Bhaswar Chatterjee [ICPAQGP 2015, Kolkata](#page-0-0)

Magnetic catalysis $T \neq 0, \mu = 0$.

Magnetic catalysis $T \neq 0, \mu = 0$.

È

 \rightarrow

◀ ㅁ ▶ ◀ @ ▶ ◀ 至 ▶ ◀ 돋

Magnetic catalysis $T \neq 0, \mu = 0$.

4 0 8

∢ 伊 ≯ ∢ 君 ≯

È

活 × \rightarrow

メロメ メ御き メミメメミド

重

 299

 μ_c Vs eB

重

∍ $\,$

 μ_c Vs eB

重

 $\,$

重

 299

 μ_c Vs eB

 299

∍ $\,$ 活

- **1** CP violation is possible within NJL model for $\theta \neq 0$.
- 2 The scalar and the pseudoscalar contributions behaves in a complimentary way such that the total mass remains almost constant for different values of θ .
- ³ Magnetic field enhances the constituent mass significantly.
- \bullet Inverse magnetic catalysis is seen for finite μ but not for finite T.
- **5** CP transition with temperature is second order for $\theta = \pi$.
- **CP transition is first order with** $\mu \implies$ **CP odd metastable** domains might be found in collider experiments.

1 Collaborators

- Prof. Hiranmaya Mishra [PRL, Ahmedbad].
- Prof. Amruta Mishra [IIT Delhi].
- **2** Centre for Nuclear Theory, VECC.
- **3** Organizers of ICPAQGP 2015.

1 The positive energy solutions are

$$
U_{\uparrow}(x, \mathbf{p}_{x}, n) = N_{n} \begin{bmatrix} (\epsilon_{n} + m) \{ \Theta(q)I_{n} + \Theta(-q)I_{n-1} \} \\ 0 \\ 0 \\ -i\sqrt{2n|q|B} \{ \Theta(q)I_{n-1} + \Theta(-q)I_{n} \} \end{bmatrix}
$$

$$
U_{\downarrow}(x, \mathbf{p}_{x}, n) = N_{n} \begin{bmatrix} 0 \\ (\epsilon_{n} + m) \{ \Theta(q)I_{n-1} + \Theta(-q)I_{n} \} \\ i\sqrt{2n|q|B} \{ \Theta(q)I_{n-1} + \Theta(-q)I_{n} \} \\ -p_{z} \{ \Theta(q)I_{n} - \Theta(-q)I_{n-1} \} \end{bmatrix}.
$$

Ð

 299

∍

1 The negative energy solutions are

$$
V_{\uparrow}(x, -p_{\chi}, n) = N_{n} \begin{bmatrix} \sqrt{2n|q|B} \{ \Theta(q)I_{n} - \Theta(-q)I_{n-1} \} \\ ip_{2} \{ \Theta(q)I_{n-1} + \Theta(-q)I_{n} \} \\ 0 \\ i(\epsilon_{n} + m) \{ \Theta(q)I_{n-1} + \Theta(-q)I_{n} \} \end{bmatrix},
$$

$$
V_{\downarrow}(x, -p_{\chi}, n) = N_{n} \begin{bmatrix} ip_{z} \{ \Theta(q)I_{n} + \Theta(-q)I_{n-1} \} \\ \sqrt{2n|q|B} \{ \Theta(q)I_{n-1} - \Theta(-q)I_{n-1} \} \\ -i(\epsilon_{n} + m) \{ \Theta(q)I_{n} + \Theta(-q)I_{n-1} \} \\ 0 \end{bmatrix}
$$

.

 299