Gluon Condensates and Energetic Lepton Pairs from Quark Gluon Plasma

Aritra Bandyopadhyay

Theory Divison Saha Institute of Nuclear Physics Kolkata, India

Collaborator :: Purnendu Chakraborty (VECC)

[Talk prepared for ICPAQGP]

Aritra (SINP)

Nonperturbative Dilepton Rate

1 Introduction

2 Setup

5 Results

2) Setup

Quark Sector

5 Results

Conclusions

Introduction

Motivations

Dilepton Rate: Introduction

- A locally equilibrated plasma is formed only transiently in the collision.
- Production of dileptons \implies Signal of plasma formation.
- Without further interaction real photon escapes unperturbed and virtual photon decays into a lepton pair in the process.

$$\begin{array}{ll} \displaystyle \frac{dR}{d^4p} & = & \displaystyle -\frac{\alpha_{\mathrm{em}}}{12\pi^3 M^2} n_B\left(\omega\right) \rho\left(\omega,p\right) \\ \\ \displaystyle \rho\left(\omega,p\right) & = & \displaystyle \frac{1}{\pi} \mathrm{Im} \ \Pi^{\mu}_{\mu}\left(p_0+i\eta,p\right) \end{array}$$

Intermediate mass Dileptons

[E.V.Shuryak, Phys. Lett. B 78, 150(1978)]

Intermediate mass Dileptons $\longrightarrow m_{\phi} \approx 1 \text{ GeV} < M < m_{\psi} \approx 3 \text{ GeV}$ Below 1 GeV, the hadronic process dominates, whereas, above 3 GeV the Drell-Yan process and the charmonium decays are the major processes.

Aritra (SINP)

Nonperturbative Dilepton Rate

February 4, 2015 6 / 27

Goa

2 Setup

5 Results

Conclusions

QCD Equation Of State

- Phenomenologically interesting domain $\longrightarrow g \approx 2$
- Thermal scales are not well separated. $(g^2T < gT < T$ (?))

Aritra (SINP)

Alternative methods

- Perturbation Theory (PT)- is it sufficient?
- Lattice techniques (Euclidean) => Spectral function (Minkowski)
 Analytic continuation in LQCD is very error prone.
- Alternative method is required where we can exploit both perturbative and non-perturbative domain separately.

Operator Product Expansion

• Correlator in QCD ::

In a background of quark and gluon fields (i.e the QCD vacuum) it can be expressed in terms of vacuum condensates and coefficient functions.

$$\langle J_{\mu}(x)J_{\nu}(0)\rangle \approx \sum_{i}c_{i} O_{i}$$

• Operator product expansion(OPE)

short distance effects $\longrightarrow c_i \longrightarrow$ wilson co-efficients (PT) large distance effects $\longrightarrow O_i \longrightarrow$ vacuum condensates (Phenomenology)

In medium corrections

• Zero temperature D=4 operators

gluonic
$$\longrightarrow \langle G^2 \rangle$$
, quark $\longrightarrow \langle \bar{\psi}\psi \rangle$

• Additional in medium operators,

gluonic	\longrightarrow	$\langle u\Theta^g u \rangle$
quark	\longrightarrow	$\langle u\Theta^f u \rangle$

where $u^{\mu} \longrightarrow$ four velocity of the heat bath.

• $\Theta^g_{\mu\nu} + \Theta^f_{\mu\nu} \Longrightarrow$ Traceless part of stress tensor \Longrightarrow determines the shape of the spectral function.

2) Setup

5 Results

Conclusions

Topology

In medium, for the case of light quarks,

$$[\Pi_G(p)]_{I,m=0} = \langle G^2 \rangle \frac{g^2 N_f}{16\pi^2 p^2} - \langle u \Theta^g u \rangle \frac{g^2 N_f}{3\pi^2 p^2} \left[\frac{\omega^2}{p^2} - \frac{1}{4} \right]$$

Topology II

For light quarks, no contribution in Vacuum. In medium,

$$[\Pi_G(p)]_{II,m=0} = \frac{g^2 N_f}{9\pi^2 p^2} \langle u \Theta^g u \rangle \left[\log\left(\frac{-p^2}{\Lambda^2}\right) \left(1 - \frac{4\omega^2}{p^2}\right) - 2 + 6\frac{\omega^2}{p^2} \right]$$

Topology II : Ambiguities

There are two possibilities.

The Gluon line can be soft.

The quark line in between can also be soft \longrightarrow quark condensate \longrightarrow mixed via gluonic effects.

Mixing must be subtracted out.

Topology II : Remedy

Gluon operators - Quark operators \times contributions of the gluonic operators to those quark operators.

S.C.Generalis and D.J.Broadhurst, Phys. Lett. 139B (1984) 85

A.G.Grozin, Int.J.Mod.Phys. A10 (1995) 3497-3529

2) Setup

5) Results

D=4 Quark condensate contribution

D=4 quark condensate (lowest order diagram and gluonic corrections)

(top left) quark vacuum condensate, (top right) self energy correction (bottom left and bottom right) vertex correction

Aritra (SINP)

Nonperturbative Dilepton Rate

Correlation Function for light quarks

Leading Order

$$[\Pi_Q(p)]_{m=0} = \langle u\Theta^f u \rangle \frac{8}{3p^2} \left(1 - 4\frac{\omega^2}{p^2}\right)$$

Next to Leading Order (Gluonic corrections)

$$[\Pi_Q(p)]_{m=0} = \langle u\Theta^f u \rangle \frac{16g^2}{27\pi^2 p^2} \left(1 - 4\frac{\omega^2}{p^2}\right) \left(1 - \log\left(\frac{-p^2}{\Lambda^2}\right)\right)$$

2) Setup

5 Results

Final expressions

• So, putting it altogether,

$$\Pi_{G}(p)|_{m=0} = \langle u\Theta^{g}u \rangle \frac{g^{2}N_{f}}{9\pi^{2}p^{2}} \left[\log\left(\frac{-p^{2}}{\Lambda^{2}}\right) \left(1 - \frac{4\omega^{2}}{p^{2}}\right) \right]$$

$$\Pi_{Q}(p)|_{m=0} = -\langle u\Theta^{f}u \rangle \frac{16g^{2}}{27\pi^{2}p^{2}} \left[\log\left(\frac{-p^{2}}{\Lambda^{2}}\right) \left(1 - \frac{4\omega^{2}}{p^{2}}\right) \right]$$

• The leading spectral function correction is given by,

$$\delta\rho(\omega,p) = -\frac{4g^2}{9\pi p^2} \left(1 - 4\frac{\omega^2}{p^2}\right) \left[\frac{8}{3}\Theta_f^{00} - \frac{N_f}{2}\Theta_g^{00}\right]$$

Results

NLO perturbative spectral function

 $(T=0.4 \text{ GeV}, N_f = 3)$

NLO spectral function obtained via PT and comparison with Born Rate

Aritra (SINP)

Results

NLO OPE spectral function (Free Limit)

 $(T=0.4 \text{ GeV}, N_f = 3)$

 $\ensuremath{\mathsf{NLO}}$ spectral function obtained via $\ensuremath{\mathsf{OPE}}$ in the stefan boltzman limit and comparison with Born Rate

Aritra (SINP)

2) Setup

Results

Conclusions and Outlook

- The in medium spectral function is obtained nonperturbatively using Operator Product Expansion.
- Taking the Stephan Boltzmann limit of the NLO spectral function obtained by OPE shows enhancement over the perturbative case.
- The final result needs condensates close to T_c from LQCD as inputs.

Thank you for your kind attention.