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Our goals....

In this work we have studied the collisional energy loss of a heavy quark propagating through a high
temperature Quark Gluon Plasma (QGP) to leading order in the Quantum Chromodynamics (QCD)
coupling constant.

While calculating charm quark energy loss, apart from the heavy-light scattering, we have also considered
the contribution from the scattering of the test particle (heavy) with thermal charm quark.

We have also studied the energy loss of the incident heavy quark incorporating the running coupling.

[This work has been done in collaboration with Mahatsab Mandal, sreemoyee Sarkar, Pradip K. Roy and Sukalyan
Chattopadhyay. ]
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Formalism

One of the excellent probes of the quark gluon plasma (QGP) are the jets formed in relativistic heavy ion
collisions. Due to the formation of such jets, the partonic energy loss in a QCD plasma need to be studied
in detail.

To investigate the process, one of the basic quantities is the evaluation of the rate of energy loss per unit
distance of a parton produced in a large sized medium.
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The following points:

The factor (ω) makes dE
dx

calculable with presently available methods for resumming perturbation
theory.
The interaction rate Γ calculated with tree level diagrams of scattering process has quadratic IR
divergence.
Factor ω in dE

dx
makes IR divergence ⇒ Logarithmic divergence.

Use of effective propagator for exchanged photon softens the divergences, so that Γ is only
logarithmic divergent.
Thus, dE

dx
is infrared finite ⇒ divergences are screened by plasma effects at scale gT .
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Formalism (II)

In case of fermionic initial (nF (Ek )) and final states (nF (E
′

k ), nF (E
′

p)), the phase space factor (PSF) is

given as,

Here N(q0) = (exp(q0/T ) − 1)−1 and q0 = ω.
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Figure: Feynman diagram for the scattering process with effective gluon propagator
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Braaten and Yuan prescription

Introduction of an arbitrary scale of momentum (q∗) ⇒ separates hard momentum transfer (q ∼ T ) from
soft momentum transfer (q ∼ gT ).

Thus, the separation scale is (gT << q∗ << T ) valid for weak coupling limit.

HARD #
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Braaten and Yuan prescription

Introduction of an arbitrary scale of momentum (q∗) ⇒ separates hard momentum transfer (q ∼ T ) from
soft momentum transfer (q ∼ gT ).

Thus, the separation scale is (gT << q∗ << T ) valid for weak coupling limit.

HARD # Tree-level scattering diagrams y

Ahard + B ln(T/q∗).

SOFT # Effective photon propagator y

Asoft + B ln(q ∗ /gT ).

The result is independent on the arbitrary scale.

ln(1/g) =⇒ Contributions from all momentum scales from (T) to (gT).
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Number density estimations

In Table the variation of the number densities with the temperature of the medium can be observed. From
the table it is evident that at temperatures relevant to LHC energies heavy quark density is quite significant
along with light quarks and gluons.

The number density of charm quarks, light quarks and gluons present in the medium has been estimated by
the following formula

ni =
gi

(2π)3

∫

∞

0

d3p

eEi/T ± 1

Temperature (GeV) nq + nq̄ (fm
−3) ng (fm

−3) nQ + nQ̄ (fm−3)

0.3 7.70374 6.8478 0.5795
0.4 18.2607 16.2317 2.5511
0.5 35.6655 31.7026 7.3500
0.6 61.6299 54.7822 16.0630

Table: Variation of number density of heavy quarks, light quarks and gluons with temperature

Souvik Priyam Adhya



The soft contribution to the energy loss

The soft contribution to the energy loss is evaluated in the region where the momentum q of the gluon line
is small and is of the order of gT .

Thus, in this kinematical region, the gluon propagator has has to be modified using the hard thermal loop
(HTL) resummation method devoloped by Braaten and Pisarski to incorporate the in-medium

modifications ( m2 = m2
d/2 and x = ω/q).
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HTL propagators
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with m2 = m2
d/2 and x = ω/q.
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The soft contribution to the energy loss (II)

The angular integrations required for evaluation of the soft part are,
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;
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The soft contribution to the heavy quark energy loss can be written as,
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=
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The ω,q and k integration cannot be performed analytically and have to be solved numerically.
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The hard contribution to the energy loss

The hard contribution to the energy loss can be obtained easily by
setting md = 0 and setting the limit of q integration from q∗ to
√

4EpT . This is only valid in the momentum transfer region of
q > q∗.

The total result is obtained by adding the soft and hard contributions to
the energy loss

(

−
dE

dx

)

QQ→QQ
=

(

−
dE

dx

)

soft
+

(

−
dE

dx

)

hard
(7)

1

1
E. Braaten and M.H. Thoma, Phys. Rev. D 44, 1298(1991).
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Energy loss in presence of light bath particles

Collisional energy loss of heavy quarks with light quarks
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=

g4T 2Nf

6π

(

ln
q∗

mg
− 0.843

)

(

−
dE

dx

)Qq→Qq

hard
=

g4T 2Nf

12π6

(

ln
2TE

(q∗)2
+

8

3
− γE +

ζ′(2)

ζ(2)

)

Collisional energy loss of heavy quarks with gluons
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ζ′(2)
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2 3
2
E. Braaten and M.H. Thoma, Phys. Rev. D 44, R2625(1991).

3
S. Peigne and A. Peshier, Phys. Rev. D 77, 014015 (2008).
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Implementation of the running coupling

In the previous treatment we have kept αs fixed. To study the effect of the running coupling, we use,

αeff (Q
2
) =

4π

β0

L
−1
−

(8)

with Q2 = ω2 − q2, β0 = 11 − 2
3
nf and L− = ln(−Q2/Λ2) with Λ = 0.263 GeV.

Moreover, we have also treated Debye mass (mD ) to be a function of both Q2 and T , i.e.,

m
2
D ≡ m

2
D (T ,Q

2
) = 4παeff (Q

2
)(1 + nf /6)T

2

4 5 6

4
Yu.L. Dokshitzer, G. Marchesini, B.R. Webber, Nucl.Phys. B 469, 93 (1996).

5
P. B. Gossiaux and J. Aichelin, Phys. Rev. C 78, 014904 (2008).

6
J. Uphoff, O. Fochler, Z. Xu and C. Greiner, Phys. Rev. C 84, 024908 (2011).
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Results
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Figure: Energy loss dE/dx of a charm quark as a function of its momentum for T = 0.4 GeV (left panel) and
T = 0.6 GeV (right panel).
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Results (II)
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Figure: Comparison of running coupling (αeff ) on energy loss for QQ → QQ scatterings at 0.4 GeV (left
panel) and at 0.6 GeV (right panel) with the fixed value of the coupling constant (αs ).
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Summary and conclusions

We have calculated the energy loss of a heavy quark in a medium where, in addition to the light particles,
the partonic consists of thermalized heavy quarks.

The heavy quark loses energy in the hot medium has been done via theory of collisional(qQ → qQ,
Qg → Qg , and QQ → QQ) energy loss processes.

The total contribution from these three processes are plotted and compared with energy loss when the
heavy quark with the heavy quark scattering taken into account.

In this calculation, the momentum has been scaled to an upper limit of qmax =
√

4EpT .

It is observed that by including the process QQ → QQ the total heavy quark energy loss increases by 5%
and 8% for temperatures 400 MeV and 600 MeV respectively at momentum 25 GeV.

We have also found that the energy loss is significantly higher when the coupling constant is replaced by
running.

These observations are consistent with the nature of number densities of plasma particles with temperature.

What next?

All suggestions are welcome...
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Dynamical Screening

Longitudinal and transverse HDL propagators

∆L(q0, q) =
−1

q2+2m2

[

1−
q0
2q log

(

q0+q

q0−q

)]

∆T (q0, q) =
−1

q2
0−q2

−m2
q2
0

q2

[

1+
q2−q2

0
2qq0

log

(

q0+q

q0−q

)]

For q0 → 0 longitudinal photons acquire an effective mass

m2
D = 2m2 = e2T 2

3 which screens IR singularities.

For q0 → 0 transverse (or magnetic) interactions are NOT screened;
only dynamical screening.
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Dynamical Screening

Retaining the leading term for q0
q → 0

∆T ≃
1

q2
−

iπm2q0
2q

qC =
(

πm2q0
2q

)(1/2)

Frequency dependent screening with a frequency dependent cut-off.

In some, but not all situations, this cut-off is able to screen IR
singularities so that finite results are obtained.
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The hard contribution to the energy loss.

First, we will focus on the calculation where the heavy quark interacts with the thermal heavy quarks
having mass M2 and momentum k. The hard contribution to (−dE/dx) reads as,

(

−
dE

dx

)hard

QQ→QQ
=

(2π)4

(2π)9Ep23.2vp

∫

[ E ′

pE
′

k

E ′

pEkE
′

k
EpEk

]

q
2
dqd(cos θq )dφqd(cos θk )dφkk

2
dk ×

×[PSF ]ω | M |
2
δ
(

ω − (~vp.~q) −
t

2Ep

)

δ
(

ω − (~vk .~q) +
t

2Ek

)

dω

(9)

The squared matrix amplitude for the process QQ → QQ(summed and averaged over spins) is given by,

where m2
eq = M2

1 + M2
2 ; s + t + u = 2M2

1 + 2M2
2 ,

| M |
2
=
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4
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{ 8
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2
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2
+ (m

2
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2
+ 2m

2
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Souvik Priyam Adhya



The calculation of dirac delta functions

The Delta function of the energy variable can be written without any approximation as,

δ(Ep + Ek − E
′

p − E
′

k ) =

∫

−∞

∞

δ(Ep − E
′

p − ω)δ(ω − E
′

k + Ek )dω (11)

δ(Ep − E
′

p − ω) =
E ′

p

Ep
δ
(

ω − (~vp.~q) −
t

2Ep

)

(12)

where ~q = ~p −~p′ = ~k′ −~k.

In order to calculate the integrals given in previous equations, let us introduce the following identities [3],
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2
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