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Prelude

s Expected transition for the exotic matter produced in the high-energy
heavy-ion experiments.
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Prelude

s Expected transition for the exotic matter produced in the high-energy
heavy-ion experiments.

s Distinctive dynamic properties to be studied for signatures of such transitions,
a quite gruelling stuff because of the short span existence of the so called
Quark-Gluon Plasma (QGP).
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Prelude

s Expected transition for the exotic matter produced in the high-energy
heavy-ion experiments.

s Distinctive dynamic properties to be studied for signatures of such transitions,
a quite gruelling stuff because of the short span existence of the so called
Quark-Gluon Plasma (QGP).

s Possibilities of studying transport properties of such deconfined state providing
the opportunity to investigate the QCD phases like the cross-over, 1st order and
the region of Critical End Point (CEP) expectedly a second order transition
regime.

Sudipa Upadhaya (Bose Institute) Shear Viscosity and Phase Diagram from Polyakov–Nambu–Jona-Lasinio modelNovember 17, 2015 2 / 24



Prelude

♣ In hydrodynamical description, dissipative processes are quantified by the
transport coefficients, shear (η) & bulk viscosity (ζ).

♣ Apart from carrying information on how far the system appears from ideality,
their values and properties also provide relevant insight into the fluid’s dynamics
and its critical phenomena.

♣ For various materials e.g. Helium, Nitrogen or Water, specific shear viscosity η
s

is known experimentally to show a minimum at the phase transition. On the
other hand, specific bulk viscosity ζ

s
was argued to be maximum at that point.

♣ Henceforth, the bulk & shear viscosities near Tc modify the evolution of the
QCD medium and influence phenomenological observables as well that
characterise the expansion dynamics.

♣ Thus transport coefficients are of particular interest to quantify the properties

of strongly interacting relativistic fluids and its phase transitions.
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Reviewing some basics

Sudipa Upadhaya (Bose Institute) Shear Viscosity and Phase Diagram from Polyakov–Nambu–Jona-Lasinio modelNovember 17, 2015 4 / 24



Reviewing some basics

The EoM of a viscous fluid may be obtained by adding to the ideal
momentum flux a term σ′

ik which gives the irreversible viscous
transfer of momentum in the fluid
Πik = pδik + ρvivk − σ′

ik
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The EoM of a viscous fluid may be obtained by adding to the ideal
momentum flux a term σ′

ik which gives the irreversible viscous
transfer of momentum in the fluid
Πik = pδik + ρvivk − σ′
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Depends on space derivatives of the velocity.
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The EoM of a viscous fluid may be obtained by adding to the ideal
momentum flux a term σ′

ik which gives the irreversible viscous
transfer of momentum in the fluid
Πik = pδik + ρvivk − σ′

ik

Depends on space derivatives of the velocity.
Supposed to be a linear function of ∂vi

∂xk
.
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Reviewing some basics

The EoM of a viscous fluid may be obtained by adding to the ideal
momentum flux a term σ′

ik which gives the irreversible viscous
transfer of momentum in the fluid
Πik = pδik + ρvivk − σ′

ik

Depends on space derivatives of the velocity.
Supposed to be a linear function of ∂vi

∂xk
.

Symmetrical combinations of the derivatives ∂vi
∂xk

.

σ′

ik = η( ∂vi∂xk
+ ∂vk

∂xi
− 2

3∂ik
∂vl
∂xl

) + ζδik
∂vl
∂xl
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Kubo Formalism

The Kubo formula for shear viscosity gives,

η(ω) = 1
15T

∫

∞

0 dte iωt
∫

d~r(Tµν(~r , t),Tµν(0, 0))

The Kubo formula can also be rewritten as,

η(ω) = β
∫

∞

0 dte iωt
∫

d~r(T21(~r , t),T21(0, 0)) =
i
ω [Π

R(ω)− ΠR(0)]

with retarded correlator,
ΠR(ω) = −i

∫

∞

0 dte iωt
∫

d3~r < [T21(~r , t),T21(0)] >
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Continued

To calculate the retarded correlator, we use Matsubara formalism

Π(ωn) =
1
β

∑

l

∫

d3p
(2π)3

p2Tr [γ2G (~r , ωl + ωn)γ2G (~p, ωl)]

This leads to,

η = π
T

∫

∞

−∞

∫

d3p
(2π)3

p2fΦ(1− fΦ)Tr [γ2ρ(ǫ, p)γ2ρ(ǫ, p)]

On evaluating the trace we get,

η[Γ(p)] = 16NcNf

15π3T

∫

∞

−∞

∫

∞

0 dpp6
M2Γ2(p)fΦ(ǫ)(1−fΦ(ǫ))

((ǫ2−p2−M2+Γ2(p))2+4M2Γ2(p))2
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PNJL Model
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PNJL Model

⇔ A QCD inspired phenomenological model developed by coupling the
Polyakov loop potential to the old Nambu-Jona-Lasinio Model.
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⇔ A QCD inspired phenomenological model developed by coupling the
Polyakov loop potential to the old Nambu-Jona-Lasinio Model.

⇔ In NJL model spontaneous breaking of chiral symmetry takes place due
to the dynamical generation of fermionic mass.

Sudipa Upadhaya (Bose Institute) Shear Viscosity and Phase Diagram from Polyakov–Nambu–Jona-Lasinio modelNovember 17, 2015 7 / 24



PNJL Model

⇔ A QCD inspired phenomenological model developed by coupling the
Polyakov loop potential to the old Nambu-Jona-Lasinio Model.

⇔ In NJL model spontaneous breaking of chiral symmetry takes place due
to the dynamical generation of fermionic mass.

⇔ However, gluon dynamics being sucessfully incorporated by the
background temporal field, PNJL model encapsulates the deconfinement
physics as well. The chiral and deconfinement order parameters are
entwined into a single framework.
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PNJL Model

⇔ A QCD inspired phenomenological model developed by coupling the
Polyakov loop potential to the old Nambu-Jona-Lasinio Model.

⇔ In NJL model spontaneous breaking of chiral symmetry takes place due
to the dynamical generation of fermionic mass.

⇔ However, gluon dynamics being sucessfully incorporated by the
background temporal field, PNJL model encapsulates the deconfinement
physics as well. The chiral and deconfinement order parameters are
entwined into a single framework.

⇔ Henceforth, using the thermodynamic potential we can find the fields,
pressure and constituent masses for corresponding T & µ.
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PNJL model formalism2

1S.K.Ghosh,T.K.Mukherjee,M.G.Mustafa and R.Ray, PRD 77, 094024 (2008)
2S.K.Ghosh,T.K.Mukherjee,M.G.Mustafa and R.Ray, PRD 73, 114007 (2006)
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PNJL model formalism2

Thermodynamic potential for PNJL model

Ω = U
′
[Φ, Φ̄,T ] + 2gS (σ

2
u + σ

2
d ) −

gD

2
σuσdσs + 3

g1

2
(σ

2
f )

2
+ 3g2σ

4
f − 6

∑

f=u,d

∫ Λ

0

d3p

(2π)3
Ef Θ(Λ − |~p|)

− 2T
∑

f=u,d

∫

∞

0

d3p

(2π)3
ln

[

1 + 3(Φ + Φ̄e
−

(Ef −µf )
T )e

−
(Ef −µf )

T + e
−3

(Ef −µf )
T

]

− 2T
∑

f=u,d

∫

∞

0

d3p

(2π)3
ln

[

1 + 3(Φ̄ + Φe
−

(Ef +µf )
T )e

−
(Ef +µf )

T + e
−3

(Ef +µf )
T

]

1S.K.Ghosh,T.K.Mukherjee,M.G.Mustafa and R.Ray, PRD 77, 094024 (2008)
2S.K.Ghosh,T.K.Mukherjee,M.G.Mustafa and R.Ray, PRD 73, 114007 (2006)
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Ω = U
′
[Φ, Φ̄,T ] + 2gS (σ

2
u + σ

2
d ) −

gD

2
σuσdσs + 3

g1

2
(σ

2
f )

2
+ 3g2σ

4
f − 6

∑

f=u,d

∫ Λ

0

d3p

(2π)3
Ef Θ(Λ − |~p|)

− 2T
∑

f=u,d

∫

∞

0

d3p

(2π)3
ln

[

1 + 3(Φ + Φ̄e
−

(Ef −µf )
T )e

−
(Ef −µf )

T + e
−3

(Ef −µf )
T

]

− 2T
∑

f=u,d

∫

∞

0

d3p

(2π)3
ln

[

1 + 3(Φ̄ + Φe
−

(Ef +µf )
T )e

−
(Ef +µf )

T + e
−3

(Ef +µf )
T

]

where the P-loop potential1,

U ′(Φ,Φ̄,T)
T 4 =

U(Φ,Φ̄,T)
T 4 − κln[J(φ, φ̄)]

1S.K.Ghosh,T.K.Mukherjee,M.G.Mustafa and R.Ray, PRD 77, 094024 (2008)
2S.K.Ghosh,T.K.Mukherjee,M.G.Mustafa and R.Ray, PRD 73, 114007 (2006)
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Contd.
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Contd.

U(Φ) is the Landau-Ginzburg potential given by,
U(Φ,Φ̄,T)

T 4 = −b2(T )
2 Φ̄Φ− b3

6

(

Φ3 + Φ̄3
)

+ b4
4

(

Φ̄Φ
)2

with, b2(T ) = a0 + a1

(

T0
T

)

+ a2

(

T0
T

)2
+ a3

(

T0
T

)3
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Contd.

U(Φ) is the Landau-Ginzburg potential given by,
U(Φ,Φ̄,T)

T 4 = −b2(T )
2 Φ̄Φ− b3

6

(

Φ3 + Φ̄3
)

+ b4
4

(

Φ̄Φ
)2

with, b2(T ) = a0 + a1

(

T0
T

)

+ a2

(

T0
T

)2
+ a3

(

T0
T

)3

First job is to minimise Ω and get the field values. Equations to be
solved are: ∂Ω

∂σu
= 0 , ∂Ω

∂σd
= 0 , ∂Ω

∂Φ = 0 & ∂Ω
∂Φ̄

= 0
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Contd.
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with, b2(T ) = a0 + a1

(

T0
T

)

+ a2

(

T0
T

)2
+ a3

(

T0
T

)3

First job is to minimise Ω and get the field values. Equations to be
solved are: ∂Ω

∂σu
= 0 , ∂Ω

∂σd
= 0 , ∂Ω

∂Φ = 0 & ∂Ω
∂Φ̄

= 0

The distribution functions for the particles and antiparticles are

f +Φ = (Φ̄+2Φe−β(Ep+µ))e−β(Ep+µ)+e−3β(Ep+µ)

1+3(Φ̄+Φe−β(Ep+µ))e−β(Ep+µ)+e−3β(Ep+µ)

f −Φ = (Φ+2Φ̄e−β(Ep−µ))e−β(Ep−µ)+e−3β(Ep−µ)

1+3(Φ+Φ̄e−β(Ep−µ))e−β(Ep−µ)+e−3β(Ep−µ)
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Parametrization
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Parametrization

⇔ Inspecting the detailed behavior of the integrand, we see that η
converges for the criterion, η[Γ(p)] < ∞ ⇔ p3e−βp/2 ∈ o(Γ(p))
where, o(-) denotes the Little-Landau symbol.
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Parametrization

⇔ Inspecting the detailed behavior of the integrand, we see that η
converges for the criterion, η[Γ(p)] < ∞ ⇔ p3e−βp/2 ∈ o(Γ(p))
where, o(-) denotes the Little-Landau symbol. The feasible configurations
of Γ satisfying the above conditions are ::

Constant : Γconstant = 100MeV

Exponential : Γexp(p) = Γconstante
−βp/8

Lorentzian : ΓLor (p) = Γconstant
βp

1+(βp)2

Divergent : Γdiv (p) = Γconstant
√
βp
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Parametrization

⇔ Inspecting the detailed behavior of the integrand, we see that η
converges for the criterion, η[Γ(p)] < ∞ ⇔ p3e−βp/2 ∈ o(Γ(p))
where, o(-) denotes the Little-Landau symbol. The feasible configurations
of Γ satisfying the above conditions are ::

Constant : Γconstant = 100MeV

Exponential : Γexp(p) = Γconstante
−βp/8

Lorentzian : ΓLor (p) = Γconstant
βp

1+(βp)2

Divergent : Γdiv (p) = Γconstant
√
βp

⇔ Interesting to see the effects of these variations of Γ on η.
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Continued..η as function of T
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Figure: η as a function of T at vanishing
chemical potential for different forms of
Γ
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♣ Increase of η unambiguously
lessens the spectral width and
vice-versa.
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comprehend the nature of the figure :
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Continued..η as function of T
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Figure: η as a function of T at vanishing
chemical potential for different forms of
Γ

♣ Increase of η unambiguously
lessens the spectral width and
vice-versa.

♣ Clearly reflected in the
juxtaposition of different
parametrization of Γ and hence to
comprehend the nature of the figure :

ηLor > ηexp > ηconst > ηdiv
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Continued..η as function of µq
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♣ The corresponding natures in the 1st order, cross-over & beyond cross-
over region along the T direction meet the expectation quite well.

♣ Jump in η corresponding to T=100 MeV at around µ ≃ 280 MeV :: An
issue to be discussed in the following sections.
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Results :: Simulating η in detail along T & µ direction
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Result I :: η along µ direction
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Result I :: η along µ direction
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visible.
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Figure: Variation of η with quark
chemical potential for various T

⇔ Two distinct regimes are clearly
visible.

⇔ The temperature regime of
70-100 MeV lies in the 1st order
phase transition region, where η,
involving 1st order pressure
derivatives shows jump/discontinuity.

Sudipa Upadhaya (Bose Institute) Shear Viscosity and Phase Diagram from Polyakov–Nambu–Jona-Lasinio modelNovember 17, 2015 14 / 24



Result I :: η along µ direction

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0  50  100  150  200  250  300  350  400

η

µq

T=70 MeV
T=90 MeV

T=100 MeV
T=115 MeV
T=120 MeV
T=125 MeV
T=130 MeV
T=140 MeV
T=150 MeV
T=160 MeV
T=170 MeV
T=180 MeV

Figure: Variation of η with quark
chemical potential for various T

⇔ Two distinct regimes are clearly
visible.

⇔ The temperature regime of
70-100 MeV lies in the 1st order
phase transition region, where η,
involving 1st order pressure
derivatives shows jump/discontinuity.

⇔ Whereas the T range of 120-180
MeV lies in the cross-over zone of
QCD phase diagram and η

expectedly shows continuous
behaviour.
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Result II :: η
s
along T direction
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Result II :: η
s
along T direction

→ Observation of minimum values of η
s
for different fluids.
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Result II :: η
s
along T direction

→ Observation of minimum values of η
s
for different fluids.

Figure: Unphysical behaviour of η/s for
constant constituent quark mass,M =
100MeV

Figure: Thermal constituent quark mass,
M(T,µ=0)

R.Lang, W.Weise, Eur. Phys. J. A

(2014) 50 : 63
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η
s
as function of T at vanishing µ
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from µq ∼ 260 MeV.
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⇔ Discontinuities starting
from µq ∼ 260 MeV.
⇔ We can now draw the
Phase diagram with all the
tools in hand.
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On The location of CEP..
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On The location of CEP..

CV = ∂ǫ
∂T = T∂2P

∂T2 = T ∂s
∂T

⇔ A transition parameter which can show distinguishable nature near CEP,
noticeably a 2nd order transition region.

Sudipa Upadhaya (Bose Institute) Shear Viscosity and Phase Diagram from Polyakov–Nambu–Jona-Lasinio modelNovember 17, 2015 20 / 24



On The location of CEP..

CV = ∂ǫ
∂T = T∂2P

∂T2 = T ∂s
∂T

⇔ A transition parameter which can show distinguishable nature near CEP,
noticeably a 2nd order transition region.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 80  100  120  140  160  180  200

C
v/

T
3

T

cross-over region

µq=0MeV
µq=100MeV
µq=200MeV
µq=240MeV

 0

 100

 200

 300

 400

 500

 600

 60  80  100  120  140  160  180  200

C
v/

T
3

T

CEP region

µq=250
µq=255
µq=260
µq=270

 20

 30

 40

 50

 60

 70

 80

 90

 100

 80  100  120  140  160  180  200

C
v/

T
3

T

1st-order region

µq=312MeV
µq=315MeV
µq=320MeV
µq=325MeV
µq=350MeV

♣ CV being a 2nd order derivative of pressure , shoots up in the regime of µq ∼ 260 MeV, otherwise shows continuous

behaviour.
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Connection with experiments

3F. Karsch and K. Redlich, PLB 695, 136 (2011)
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Connection with experiments

♣ The independent parameters in our case :: T , µB , µQ , µS .
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Connection with experiments

♣ The independent parameters in our case :: T , µB , µQ , µS .

♣ Freeze-out parametrization by Redlich et. al. has been used 3

T (µB) = a− bµ2
B − cµ4

B

µB,Q,S(
√
s) = d

1+e
√

s

d [GeV ] e[GeV−1]
B 1.308(28) 0.273(8)
Q 0.0211 0.106
S 0.214 0.161

where, a = (0.166 ± 0.002)GeV , b = (0.139 ± 0.016)GeV−1, c = (0.053 ± 0.021)GeV−3

3F. Karsch and K. Redlich, PLB 695, 136 (2011)
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Conclusions

••• Inclusion of non-idealities like viscous effects is very essential in order to get a
flavor of degree of perfectness of the fluid under concern.
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Conclusions

••• Inclusion of non-idealities like viscous effects is very essential in order to get a
flavor of degree of perfectness of the fluid under concern.

••• Various regions of the phase diagram are expected to be arrested through
phenomenological studies.

••• We presented justifications through computation of appropriate variables to
reconfirm the location of CEP.

••• All the facts and arguments strengthen the validity of the technique we used
to draw the phase diagram.

••• Experimental studies indicate towards very small specific shear viscosity for

QGP phase which is similar to what we get in our findings.
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