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INTRODUCTION

Transport properties of hot/dense matter are important for heavy ion collision (HIC), cosmology
and important for near equillibrium evolution of any thermo dynamic system

The most studied transport coefficient is perhaps shear visc osity 7. In HIC spatial anisotrpy of
colliding nuclei gets converted to momentum anisotropy thr ogh a hydro evoln. The equllibriation

is decided by 7. (I ~ 4=, the KSS bound)

The bulk viscosity ¢ - thought earlier to be not important for HIC hydro evolution . Argument:
¢ ~ (€ — 3p) that vanishes for ideal gas. However, lattice simulation ~ => large € — 3p near T¢.

This,in turn, can give rise to different physical effects (C avitation).

The temperature and chemicalpotential dependence of trans port coefficients may reveal the
location of phase transition

Most calculations are performed at zero baryon density p B . Including finite density effects are
relevent for upcoming HIC experiments, BES(Brookhaven), C BM at (GSI, Darmstadt), (NICA at
Dubna).
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QCD PHASE DIAGRAM AND HIC
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BOLTZMANN EQUATION

Boltzmann equation describes the evolution of particle distribution function

dfe.  Of° . pt Of¢ B OEq, Of%
dt ot Ea 9x* ort dpt

a

The equllibrium distribution function

0 o 1
exp B(uap® F 1) + 1

a

To estimate viscosity coefficients, consider small departure from equllibrium

dfa _ P Of) M OM S sf°

dt E, Ox+ B, Ox' Op* Ta

Oufo = —fo (L F f6)0u (B(E® —p—p-u)

Boltzmann Eq. relates non equllibrium part of distribution function to variation in fluid

velocity and temperature and chemical potential
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1", J, and transport coefficients

Distribution function is related to the energy momentum tensor

a 1% Qa 1% . a _ a dp
:zaj/dr P () T = v

pﬂ
g =S "t, [dr g,
a / B,

Change in nonequllibrium part =

g oY)
0T = Z/draggaTafa(l_fa)CIa(paﬁalL)

7; nkq j H
Zta/dra_Tafa(l_fa)< — €_|_p>pjaj(?)
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¢, n,A contd.- - -

The non equllibrium contribution related to the velocity gradients can be reorganised as
p'p’

a— 0%y —
q Q" 0;u; o

2
Wz'j = 8@"&3' + aj — g&'jﬁkuk
Shear and bulk viscosities are defined through the dissipative part

ATij = —C(Sij@kuk — 77W7;j

Thermal conductivity is defined through the dissipative part of the current

s () o (7)
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¢, n,Acontd.- - -

1= 2 | Ty "~ (rad201 I + 720 - 1)

2
_LT Z/dra% (Ta fO(1 = £)Qa + 7 f2 (1 — FO)Qu)

_ é (%)Q;ta/cﬂ“ag—;f@(l — fa)Ta(t® — n,fa)

In the bulk viscosity coefficient, the coefficient Q% depends upon the equation of state

2 a
==l (&), (5 )~ (50), (o7 )
3E, on /) .\ ou Oe / , oT ou
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( contd.

However, @), has to be supplemented by the conditions v, 6J* = 0 and u,0T*"u, =0
corresponding to baryon number and energy momentum conservation. Within the relaxation
time approximation, these Landau-Lifshitz conditions reduce to

Zta(TaQa> =0, Z<TaEaQa> —0

a

(ba(p)) = / dTa e (p) (1 — £O)]

If Landau Lifshitz conditions are not satisfied, replace
TaQa — TaQa + atq + 5Ea

The unknown coefficients to be determined from the baryon number and energy momentum
conservation equation. The expression for bulk viscosity consistent with the Landau Lifshitz

condition is then given as

p2

1
(=-= ;«wa + ata + fEa) 31-)
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n,(,A contd.

The expressions for the transport coefficients become simpler when one realises that for
ideal hydrodynamics the entropy per baryon (o) is constant.

= = Z/dr —Tafo(1— f2)

1 Tafc?(l_fg [ 2 2 2 0 (Ea_,ua> }2
- E dl’, vy T Eq
¢ 9T - / E?2 P+ o oT T o

a

nkE, 2
nT Z/dr Tafal—fa)< — w)

® Transport coefficients are nonnegative as they must be.
® |tis important to include the Landa-Liftshitz conditions to obtain the above results.

Knowing the equation of state and other thermodynamic quantities like velocity of sound etc.
and the relaxation time one can estimate the viscosity coefficient.

This thermodynamics and estimation of relaxation time is done within the Nambu Jonalasinio

model.
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Nambu Jonalasinio model : Thermodynamics

L = P(iyud* —mo)p — G (99)? + (Pir°t%)?)

The thermodynamic potential (negative of pressure):

(M — m0)2
141G

Q3. 1) =~ 5 [ Baodi- 5 [ ik (1 + exp(~B(E ~ ) + 1~ )+

v = 2NNy (degeneracy); E(k) = vk? + M?2,M : Constituent quark mass get determined
self consistently solving the mass gap equation

_ M
Aﬁﬂm—%WszmmX;P/E&ﬂ%#JK&m—h&ﬁme
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PHASE DIAGRAM; NJL MODEL
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PHASE DIAGRAM; NJL MODEL CONTD.- - -
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MASSES ; NJL MODEL CONTD.- - -
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ESTIMATING THE AVERAGE RELAXATION TIME

Avg. relaxation time

Thermally averaged transition rate

Wap = ! /fabeadeade
Nanyp
~ 2y/s(s —4m?) [O do NG NG
Wan(e) = D2 [ a0 = 1o (O3 = FaC )
do 1 1

M |?

dt B 167s pap
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ESTIMATING THE AVERAGE RELAXATION TIME

® For two flavors we consider the following possible scatterings.
ut — ut, ud— ud, wd — dd,
uu — uu, ud— ud, uu— uu,
ad — ud, dd —dd, dd— uu,
du — du, dd — dd, dd — dd,

® Using i-spin symmetry, charge conjugation symmetry as well as the crossing
symmetry to relate the matrix element square for the above 12 processes reduce to

evaluating only two independent matrix elements v — ua and ud — ud

® Dominant contribution comes from propagation of pion and sigma mode in the
s-channel.
® The temperature dependence of = and o modes play an important role in these cross

section evaluation.
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RELAXATION TIME: T BEHAVIOR
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Shear viscosity: T behavior
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Bulk viscosity: T behavior
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Bulk viscosity: T behavior

For zero chemical potential

c= N dre @ [ 2(1 — 302) — 302 (M? TMer
o7 ~—~“ 2 |P dT

— nu=0
o =100 MeV

=l
AN < 'EN\‘#
>NO. t [oX
o —
H| N | o
(]
....... ~
= o

D.(Z:.ZO 1;1-0 1EISO 1éO 2(‘)0 2‘20 240 0‘?.20 1€Ii0 1éO 2(‘)0 220 240
T (MeV) T (MeV)
_ (OP) _ SXpup —NX T
— \9e /M T

T(XTTXpJpL _XiT)

CNT-QGP15, VECC, Kolkata November 17, 2015 — p. 21



45

40

3B

30

25k

~[

20 F

15

10

=100 MeV

140

160

180 200

T (MeV)

220

240

CNT-QGP15, VECC, Kolkata November 17, 2015 — p. 22



| 3 I

SUMMARY,CONCLUSIONS AND OUTLOOK

We tried to derive the viscosity coefficients using Boltzmann kinetic equation withing
relaxation time approximation within NJL model.

While n depends only on the behaviour of relaxation time and the medium dependent
masses, ¢ depends on other thermodynamic quantities and the equation of state.

The deviation from equllibrium should be consistent the Landau Lifshitz conditions.
The thermodynamics of hot and dense matter is estimated within NJL model.

The transport coefficients are non negative in the relaxation time approximation which
IS a consequence of Landau-Liftshitz conditions of fit.
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