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INTRODUCTION

• Transport properties of hot/dense matter are important for heavy ion collision (HIC), cosmology

and important for near equillibrium evolution of any thermo dynamic system

• The most studied transport coefficient is perhaps shear visc osity η. In HIC spatial anisotrpy of

colliding nuclei gets converted to momentum anisotropy thr ogh a hydro evoln. The equllibriation

is decided by η. ( η
s
∼ 1

4π
, the KSS bound)

• The bulk viscosity ζ - thought earlier to be not important for HIC hydro evolution . Argument:

ζ ∼ (ǫ− 3p) that vanishes for ideal gas. However, lattice simulation ⇒ large ǫ− 3p near Tc.

This,in turn, can give rise to different physical effects (C avitation).

• The temperature and chemicalpotential dependence of trans port coefficients may reveal the

location of phase transition

• Most calculations are performed at zero baryon density ρB . Including finite density effects are

relevent for upcoming HIC experiments, BES(Brookhaven), C BM at (GSI, Darmstadt), (NICA at

Dubna).
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QCD PHASE DIAGRAM AND HIC
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BOLTZMANN EQUATION

Boltzmann equation describes the evolution of particle distribution function

dfa

dt
=
∂fa

∂t
+

pi

Ea

∂fa

∂xi
− ∂Ea

∂xi
∂fa

∂pi
= Ca

The equllibrium distribution function

f0a =
1

expβ(uαpα ∓ µ) + 1

To estimate viscosity coefficients, consider small departure from equllibrium

dfa

dt
=
pµ

Ea

∂f0a

∂xµ
− M

Ea

∂M

∂xi
∂f0a

∂pi
= − δf

a

τa

∂µf
a
0 = −fa0 (1∓ fa0 )∂µ (β(Ea − µ− p · u)

Boltzmann Eq. relates non equllibrium part of distribution function to variation in fluid

velocity and temperature and chemical potential
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T µν, Jµ and transport coefficients

Distribution function is related to the energy momentum tensor

Tµν =
∑

a

∫

dΓapµpνfa + gµνU(σ); dΓa = νa
dp

(2π)3

Jµ =
∑

a

ta

∫

dΓa
pµ

Ea

fa

Change in nonequllibrium part ⇒

δT ij =
∑

a

∫

dΓa p
ipj

TEa

τafa(1− fa)qa(p, β, µ)

δJi =
∑

a

ta

∫

dΓa
pi

Ea

τafa(1− fa)

(

ta − nEa

ǫ+ p

)

pj∂j(
µ

T
)
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ζ , η,λ contd.· · ·

The non equllibrium contribution related to the velocity gradients can be reorganised as

qa = Qa∂iui −
pipj

2Ea

Wij

;

Wij = ∂iuj + ∂j − 2

3
δij∂kuk

Shear and bulk viscosities are defined through the dissipative part

∆T ij = −ζδij∂kuk − ηWij

Thermal conductivity is defined through the dissipative part of the current

∆Ji = λ

(

nT

w

)2

∂i

( µ

T

)
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ζ , η,λ contd.· · ·

η =
1

15T

∑

a

∫

dΓa
p4

Ea

(

τaf
0
a (1− f0a ) + τ̄af̄

0
a (1− f̄0a )

)

ζ = − 1

3T

∑

a

∫

dΓa
p2
a

Ea

(

τaf
0
a (1− f0a )Qa + τ̄af̄

0
a (1− f̄0a )Q̄a

)

λ =
1

3

( w

nT

)2 ∑

a

ta

∫

dΓa
p2

E2
a

fa(1− fa)τa(t
a − nEa

w
)

In the bulk viscosity coefficient, the coefficient Qa depends upon the equation of state

Qa = −
[

p2
a

3Ea

+

(

∂P

∂n

)

ǫ

(

∂E

∂µ
− 1

)

−
(

∂P

∂ǫ

)

n

(

Ea − T
∂Ea

∂T
− µ

∂Ea

∂µ

)

.

]
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ζ contd.

However, Qa has to be supplemented by the conditions uµδJµ = 0 and uµδTµνuν = 0

corresponding to baryon number and energy momentum conservation. Within the relaxation
time approximation, these Landau-Lifshitz conditions reduce to

∑

a

ta〈τaQa〉 = 0,
∑

a

〈τaEaQa〉 = 0

〈φa(p)〉 =
∫

dΓa[φa(p)f
0
a (1− f0a )]

If Landau Lifshitz conditions are not satisfied, replace

τaQa → τaQa + αta + βEa

The unknown coefficients to be determined from the baryon number and energy momentum
conservation equation. The expression for bulk viscosity consistent with the Landau Lifshitz
condition is then given as

ζ = − 1

T

∑

a

〈(τaQa + αta + βEa)
p2

3Ea

〉
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η,ζ ,λ contd.

The expressions for the transport coefficients become simpler when one realises that for
ideal hydrodynamics the entropy per baryon (σ) is constant.

η =
1

15

∑

a

∫

dΓa
p4

E2
a

τaf
0
a (1− f0a )

ζ =
1

9T

∑

a

∫

dΓa
τaf

0
a (1− f0a

E2
a

[

p2 + 3v2nT
2Ea

∂

∂T

(

Ea − µa

T

)

σ

]2

λ =
1

3

( w

nT

)2 ∑

a

∫

dΓa
p2

E2
a

τafa(1− fa)

(

ta − nEa

w

)2

Transport coefficients are nonnegative as they must be.

It is important to include the Landa-Liftshitz conditions to obtain the above results.

Knowing the equation of state and other thermodynamic quantities like velocity of sound etc.
and the relaxation time one can estimate the viscosity coefficient.

This thermodynamics and estimation of relaxation time is done within the Nambu Jonalasinio

model.
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Nambu JonaLasinio model : Thermodynamics

L = ψ̄(iγµ∂
µ −m0)ψ −G

(

(ψ̄ψ)2 + (ψ̄iγ5taψ)2
)

The thermodynamic potential (negative of pressure):

Ω(β, µ) = − γ

(2π)3

∫

E(k)dk− γ

(2π)3β

∫

dk (ln(1 + exp(−β(E − µ)) + µ→ −µ)+(M −m0)2

4G

γ = 2NcNf (degeneracy); E(k) =
√
k2 +M2,M : Constituent quark mass get determined

self consistently solving the mass gap equation

M = m0 − 2G〈ψ̄ψ〉ρs = m0 +
γ

(2π)3

∫

M

E(k)
(1− f

−
(k, β, µ)− f+(k, β, µ)) dk
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PHASE DIAGRAM; NJL MODEL
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Mass∼ G〈ψ̄ψ〉 as a function of µ for T=0 (Fig a) and as a function of T for µ = 0 (Fig b)
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PHASE DIAGRAM; NJL MODEL CONTD.· · ·
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MASSES ; NJL MODEL CONTD.· · ·

Meson propagators: D = 2iG
1−2GΠσ/π
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ESTIMATING THE AVERAGE RELAXATION TIME

Avg. relaxation time

τ−1
a =

∑

b

nbW̄ab

Thermally averaged transition rate

W̄a,b =
1

nanb

∫

fafbWabdπadπb

Wab(s) =
2
√

s(s− 4m2)

1 + δab

∫ 0

tmin

dt(
dσ

dt
)(1− fc(

√
s

2
, µ))(1− fd(

√
s

2
, µ))

dσ

dt
=

1

16πs

1

pab
|M |2
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ESTIMATING THE AVERAGE RELAXATION TIME

For two flavors we consider the following possible scatterings.

uū→ uū, ud̄→ ud̄, uū→ dd̄,

uu→ uu, ud→ ud, ūū→ ūū,

ūd̄→ ūd̄, dd̄→ dd̄, dd̄→ uū,

dū→ dū, dd→ dd, d̄d̄→ d̄d̄,

Using i-spin symmetry, charge conjugation symmetry as well as the crossing
symmetry to relate the matrix element square for the above 12 processes reduce to
evaluating only two independent matrix elements uū→ uū and ud̄→ ud̄

Dominant contribution comes from propagation of pion and sigma mode in the
s-channel.

The temperature dependence of π and σ modes play an important role in these cross
section evaluation.
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RELAXATION TIME: T BEHAVIOR
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Shear viscosity: T behavior

η =
1

15

∑
a

∫
dΓa

p
4

E2
a

τaf
0

a
(1− f0

a
)
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Bulk viscosity: T behavior
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Bulk viscosity: T behavior

For zero chemical potential

ζ =
1

9T

∑

a

dΓa τa

E2
a

[

p2(1− 3v2)− 3v2(M2 − TM
dM

dT

]2
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λ(T )

λ =
1

3

( w

nT

)2 ∑

a

∫

dΓa
p2

E2
a

τafa(1− fa)

(

ta − nEa

w

)2
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SUMMARY,CONCLUSIONS AND OUTLOOK

We tried to derive the viscosity coefficients using Boltzmann kinetic equation withing
relaxation time approximation within NJL model.

While η depends only on the behaviour of relaxation time and the medium dependent
masses, ζ depends on other thermodynamic quantities and the equation of state.

The deviation from equllibrium should be consistent the Landau Lifshitz conditions.

The thermodynamics of hot and dense matter is estimated within NJL model.

The transport coefficients are non negative in the relaxation time approximation which
is a consequence of Landau-Liftshitz conditions of fit.
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