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Fluctuations:      We encounter in everyday examples  

(temperature fluctuation in a room).    

Critical Opalescence: Density                           

fluctuation near critical point

Study of temperature fluctuation may be important for 

studying QCD phase transition [D K Mishra et  al.  JPG 42, 105105(2015)] 

and for characterizing QGP [S Basu et  al. arXiv:1405.3969 [nucl-ex] ,  ibid. 

1504.04502]

Signature of temperature fluctuation   

in particle yield originated from high-

energy collisions.      

CMB temperature fluctuation

More Examples:



System with same 

temperature everywhere 

System with different 

local temperatures  

Hotspots
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Model: Medium consists of weakly interacting hot 

zones.

Within a certain pre-determined time slice ∆t, the 

temperature of a certain hot zone does not change  

Within ∆t, they are represented by a collection of  

canonical (no chemical potential, say) ensembles 

and their (inverse) temperature has a particular 

distribution.
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Ansatz: ffef eqp   )1( 

The distribution determines the average 

inverse temperature    and its fluctuation    

at every hot zone.


With time temperature distribution changes and 

so does 

We assume particle distribution is affected by 

both     and 






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[S. Dodelson, Modern Cosmology]
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Feed     inside the Boltzmann Transport Equation 

(BTE) which is the evolution equation for 

inhomogeneous, anisotropic distribution in presence 

of external force

][.. fCfFfv
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Inhomogeneity

External force

Collision term (takes care of    

interaction due to which    

distribution may change)

Momentum space gradient
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We get the evolution equation for       and hence for           

assuming Relaxation Time Approximation 

(RTA)
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Relaxation time ( The time    

within which the distribution   

changes appreciably )
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The Fourier Space (k-space) variation of          

(in a medium of almost mass less particles):



Provided average (inverse) temperature varies 

slowly with time
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1 fm

2 fm

3 fm

)( 0tt  values for 
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Observation 1: the amplitude of         is more 

towards the smaller k, i.e. towards large radius of 

the system. 

rel

rel

Rt

Observation 2: Analysis driven by BTE is limited 

by the constraint over the observation time                

Rttt  )( 0

Observation 3: Given the constraint,           is 

independent of          
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Yes, to start with, one of the ways is to get the 

temperature profile of the medium at different 

stages (i.e. proper time   ) of evolution.

Any generalized analysis possible which will be able

to avoid the constraint ?  
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R. Baier and P. Romatschke, EPJC 51, 677(2007)
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The inverse temperature profile obtained from the 

theoretical analysis for a viscous QGP medium 

(created in a central HIC) evolving hydrodynamically 

can be described by the following function:
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With the tabulated details:
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2.2 3.45 5.99 7.96

5.1 4.55 3.42 8.41

9.1 5.56 1.91 8.71

)()()/( 0

1

0 fmraGeVcfm 

iMFrom this, we can generate {      }, a sequence of 

radially varying inverse temperature values at 

different time.
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So, given           , we can define}{
iM
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(b) Also, a fluctuation on top of it:

(a) An average        . M
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The Fourier Space (k-space) variation of inverse 

temperature fluctuation:
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Where         is the Dirac delta function.
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(d) And, a relative variance for the collection        :}{
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2.2 0.047
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Let us assume that the system produced by central 

HIC freezes-out by 9.1 fm and compare theoretically    

obtained         value at the boundary with the similar 

experimentally observed (q-1) parameter [G. Wilk and Z. 

Wlodarczyk PRL 84, 2770(2000)] for hadron spectra at                      

GeV within 0-10% centrality [Z. Tang et al. 

PRC 79, 051901(2009)].



200NNs

(q-1)

0.013 0.018    0.005

Theory




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Cosmological connections: 

Temperature fluctuation of our 

universe can be explained by    

the modified Boltzmann-Gibbs    

formula with (q-1) value 0.045    0.005

Similarity with HIC experimental results: needs review

Study on the similarity between the   

surface of the last scattering for CMB  

radiation and the freeze-out surface in 

RHICE

[A. Bernui et al. PLA 356, 426(2006)]
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Summary and Conclusion:

• Time evolution of (inverse) temperature 

fluctuation

• With time, amplitude of inverse 

temperature fluctuation decreases

• With distance amplitude of inverse 

temperature fluctuation increases

• Relative fluctuation at the boundary is 

comparable with the experimental value 

under similar conditions. 
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• More studies required on the evolution of 

temperature fluctuation with more 

generalized scenarios.    

• Exploring possible connections with 

experiment in a more detailed manner.    


