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Introduction
Giant Dipole Resonance — an experimental tool

Using fission to learn about GDR properties
— Fission fragment GDR excitation (low temp.)

Bremsstrahlung radiation in spontaneous fission

Using GDR to learn about nuclear fission

— Dissipative fission dynamics (fission hindrance)
— Time scale of fission

— Temperature dependence of nuclear viscosity
— GDR excitation in near SHE



Giant Dipole Resonance

Collective vibrational mode of nuclei (Isoscalar, isovector, electric, magnetic)
Characteristics & properties

Systematics

Measure of nuclear deformation

Measure of nuclear dissipation (energy damping)

GDR probes very early stages of CN decay

Detection of GDR decay photons — energy spectrum

GDR can be used to probe & understand nuclear fission
Fission can be used to understand GDR properties



Giant Resonance modes
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Examples of nuclear collective vibrations
Electric modes

Isoscalar Isovector

Monopole
(GMR)

Dipole
(GDR)

Quadrupole
(GQR)




Isovector Giant Dipole Resonance (IVGDR)
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The Giant Dipole Resonance (GDR) is
E2T? a small amplitude, high frequency
Y GDR . . . .
F(Ey) =— B — collective mode of excitation in
(E°, —EGor) Y E, T 6or  nuclei.

Parameters governing the GDR measurement:
EGDR — Size and shape of nuclei (Egpg oc A1/3)

FGDR ——— Damping of the collective motion (Dissipation)



GDR as a probe of Deformations
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Temperature dependence of GDR width
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Grossly over-estimated at low temperatures

-Need for more data at low T -- experimental problem
-Need for better understanding — theoretical problem



Spontaneous Fission of Cf-252

nuclear fission

22Cf undergoes spontaneous fission (3%0)
Half life — 2.65 years  Alpha decay (97%)

Energy released ~ 200 MeV per fission
~ 70% of the energy goes to the K.E of the fission fragments.
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Spontaneous Fission of Cf-252
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GDR width from excited fragments of 2°2Cf
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GDR width at low temperature

Alpha induced fusion reactions used to populate low temperatures
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Can bremsstrahlung radiation be observed
Nuclear Fission?

flesions ble pudews

nucheus splitting

fission praducts (mdiesctive nuelei)

Energy Released = 200 MeV
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Emission of bremsstrahlung photons from
Cf-252 Spontaneous Fission

Is it possible ? ---- Rapid acceleration in mutual Coulomb field
What energy scales are involved ?
Experimental determination

Theoretical interpretation
- Classical — Quantum mechanical



Coulomb Acceleration Model: This model assumes coulomb
acceleration of the two fission fragment from a scission like
configuration to infinity .

d2] X J. D. Jackson
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o= () ) (1) Lo [P o

In the non-relativistic limit, B << 1
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Motion of the two fission fragment is confined to one dimensional motion along
the fission axis. Thus the relative acceleration is X=X; — X9



Energy spectrum, in the non-relativistic limit, of bremsstrahlung produced from
the acceleration of the fission fragments.
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Motion of the fragments can be determined by solving the equation for the two
particles under the influence of a repulsive coulomb potential

u 1s the reduced mass
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" r is the relative velocity
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No. of Photons/ (fission x MeV)
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R, =Z,Z,e2/E

Pre-scission kinetic
energy = 25-30 MeV

Conservation of Energy

(1 - 7Aw/E)

Emission probablity of the
bremsstrahlung photons
very small.



High Energy Photons from 2°2Cf
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Dissipative Fission Dynamics
Fundamental nuclear property - viscosity of nuclear matter & its dependenceon T
Transport properties of viscous nuclear matter - mass flow in fission process

Fission process -- Tunnelling through barrier
-- Crossing over the barrier

Time scale of fission -- 1. Flux build-up inside barrier ~20x 10 2! s for
2. Flow across the barrier non-viscous
3. Saddle to scission motion ~3 x 10 %!s fission process

Any dissipation inside or outside saddle -- lengthens these times -- slower fission

Clocks for measuring fission time scale -- pre-scission neutron multiplicity
-- pre-scission GDR gamma-decay



GDR as clock

High energy gamma-rays are emitted from the decay of Giant Dipole Resonance

NZ I'cprES
F(E,) =209 x 107°—- S - e +
(&) ? 0 A (E5 — E&pr)? + T'&prEZ

GDR decay photons are emitted at the very early stages of CN decay
GDR clock has several -- 1. Simplicity of GDR strength function
advantages and absence of truly free parameter

2. GDR vibration is much faster than fission
time scales

3. Sensitivity to deformation
(GDR strength fn. & gamma-fission ang corr.)



Fission Time Scale & Dissipation

Approach: Fokker-Plank eqn — describes evolution of collective coordinates
through phase space with dissipation coeff.
n=Ppm (B - red. diff. coeff. In units of 10?! s

Also, we can define n from Einstein’s eqn. for Diffusion const. D=nT

We also define, y=[/2® as nuclear friction coeff. (dimensionless, natural scale)

where, o describes oscillation damping in inverted oscillator

v = 1-—Critical damping
<1-Under-damped
> 1 — Over-damped

Energy

Presence of dissipation
influences the fission process
and also the particle and
gamma emission

Equilibrium .
Deformation Secission
Point

Deformation



Effects of dissipation
Enhanced emission of particles & gamma-rays -- in three regions

1. Inside the saddle Fission width is given by T, (t) =T, [l —exp(-t/7p)]

Ty, is the fission delay time — allows for enhanced emission
For over-damped situation 7, =7;/ @, In(10E, /T)

2. Atthesaddle I ,“™™ =T, (Jd+y?)-y) y = /20,

Typically, o, = ®, ['° = is replaced by I"/<ramers
Further reduction in fission width - enhances particle & gamma-rays from the interior

3. Saddle to Scission Too = Z'Ossc (M—I— 7/0)

Y, is the friction outside barrier, 1% =3 x102!s, is the undamped time constant

Introduction of dissipation reduces the fission widths — fission process slows down
GDR decay photons & particles get more time to escape — enhanced emission

Consistent with experimental data



v/ (fissionxMeV)

w(0°)/W(90°)

Experimental method

Measure GDR decay photons, fission fragments and/or ang. mom.

32G + 208pp at 230 MeV
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v/ (fissionxMeV)
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Energy dependence of dissipation

325 + 208Pb 9 240Cf
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Energy dependence of dissipation
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What next

As excitation energy increases — Dissipation increases — still slower fission
Can be used to populate & study (GDR decay) near SHE at high excitation

Very heavy nuclei [ Z> 105, A > 250 ] may be populated at high excitation
and their GDR characteristics studied ( T~ 2.5 -3 MeV)

These are highly fissile systems

At still higher excitation fission further hindered, so that,
--- Prefission GDR y emission competes with fission,
--- possible to see GDR decay photons cleanly (using difference method)

Z2Th +“Ar - 72 Hs at 10.5 & 15 MeV/A
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