Fission & Giant Dipole Resonance

Sudhee R. Banerjee VECC

Outline

- Introduction
- Giant Dipole Resonance an experimental tool
- Using fission to learn about GDR properties
 - Fission fragment GDR excitation (low temp.)
- Bremsstrahlung radiation in spontaneous fission
- Using GDR to learn about nuclear fission
 - Dissipative fission dynamics (fission hindrance)
 - Time scale of fission
 - Temperature dependence of nuclear viscosity
 - GDR excitation in near SHE

Giant Dipole Resonance

Collective vibrational mode of nuclei (Isoscalar, isovector, electric, magnetic)

Characteristics & properties

Systematics

Measure of nuclear deformation

Measure of nuclear dissipation (energy damping)

GDR probes very early stages of CN decay

Detection of GDR decay photons – energy spectrum

GDR can be used to probe & understand nuclear fission Fission can be used to understand GDR properties

Giant Resonance modes

Examples of nuclear collective vibrations Electric modes

Isoscalar

Isovector

Monopole (GMR)

Dipole (GDR)

Quadrupole (GQR)

Isovector Giant Dipole Resonance (IVGDR)

$$F(E_{\gamma}) = \frac{E_{\gamma}^{2} \Gamma_{GDR}^{2}}{(E_{\gamma}^{2} - E_{GDR}^{2})^{2} + E_{\gamma}^{2} \Gamma_{GDR}^{2}}$$

The Giant Dipole Resonance (GDR) is a small amplitude, high frequency collective mode of excitation in nuclei.

Parameters governing the GDR measurement:

E_{GDR} Size and shape of nuclei $(E_{GDR} \propto A^{-1/3})$

 Γ_{GDR} — Damping of the collective motion (Dissipation)

GDR as a probe of Deformations

Spherical

$$R_X = R_Y = R_Z \rightarrow \omega_X = \omega_Y = \omega_Z$$

Prolate

$$R_X = R_Y < R_Z \rightarrow \omega_X = \omega_Y > \omega_Z$$

Oblate

$$R_X = R_Y > R_Z \rightarrow \omega_X = \omega_Y < \omega_Z$$

General Ellipsoid

$$R_X \neq R_Y \neq R_Z \rightarrow \omega_X \neq \omega_Y \neq \omega_Z$$

20
Ne + 93 Nb \rightarrow 113 Sb*

$$E^* = 109 \text{ MeV}$$

GDR probes very early stages of Compound Nuclear decay

GDR can be used to probe & understand nuclear fission

Fission process can be used to understand GDR properties

Temperature dependence of GDR width

Width increases with temp

- -increased damping
- -Increased ang mom/deformation
- effect of thermal fluctuations

Description at moderate temperature is OK !!!

1.5 MeV < T < 2.5 MeV

Grossly over-estimated at low temperatures

- -Need for more data at low T -- experimental problem
- -Need for better understanding theoretical problem

Spontaneous Fission of Cf-252

²⁵²Cf undergoes spontaneous fission (3%) Half life – 2.65 years Alpha decay (97%)

Energy released ~ 200 MeV per fission

 $\sim 70\%$ of the energy goes to the K.E of the fission fragments.

Spontaneous Fission of Cf-252

Earlier attempt - 1995

GDR width from excited fragments of ²⁵²Cf

GDR width at low temperature

Alpha induced fusion reactions used to populate low temperatures

Physics Letters B 709 (2012) 9
Physics Letters B 713 (2012) 434
Physics Letters B 731 (2014) 92

Can bremsstrahlung radiation be observed in Nuclear Fission?

Emission of bremsstrahlung photons from Cf-252 Spontaneous Fission

Is it possible? ---- Rapid acceleration in mutual Coulomb field

What energy scales are involved?

Experimental determination

Theoretical interpretation

- Classical - Quantum mechanical

Coulomb Acceleration Model: This model assumes coulomb acceleration of the two fission fragment from a scission like configuration to infinity.

$$\frac{d^2I}{d\omega d\Omega} = 2 ||\mathbf{A}_1(\omega) + \mathbf{A}_2(\omega)||^2$$

J. D. Jackson

$$\mathbf{A}_{i}(\omega) = \left(\frac{1}{\sqrt{2\pi}}\right) \left(\frac{c}{4\pi}\right)^{\frac{1}{2}} \left(\frac{1}{c}\right) \int_{-\infty}^{\infty} dt \quad \left[\frac{\hat{\mathbf{n}} \times [(\hat{\mathbf{n}} - \boldsymbol{\beta}_{i}) \times \dot{\boldsymbol{\beta}}_{i}]}{(1 - \boldsymbol{\beta}_{i} \cdot \hat{\mathbf{n}})^{2}}\right] q_{i} e^{-i\omega[t - \hat{\mathbf{n}} \cdot \mathbf{r}_{i}(t)/c]}$$

In the non-relativistic limit, $\beta \ll 1$

$$\frac{d^2I}{d\omega d\Omega} = \frac{1}{4\pi^2 c} \left| \int_{-\infty}^{\infty} dt \sum_{i=1}^{2} [\hat{\mathbf{n}} \times (\hat{\mathbf{n}} \times \dot{\boldsymbol{\beta}}_i)] q_i e^{-i\omega[t-\hat{\mathbf{n}}\cdot\mathbf{r}_i(t)/c]} \right|^2$$

$$\dot{\boldsymbol{\beta}}_1 = \ddot{\mathbf{x}}\mu/cm_1 \qquad \dot{\boldsymbol{\beta}}_2 = -\ddot{\mathbf{x}}\mu/cm_2$$

Motion of the two fission fragment is confined to one dimensional motion along the fission axis. Thus the relative acceleration is $\ddot{\mathbf{x}} = \ddot{\mathbf{x}}_1 - \ddot{\mathbf{x}}_2$

Energy spectrum, in the non-relativistic limit, of bremsstrahlung produced from the acceleration of the fission fragments.

$$\frac{d^2N}{dE_{\gamma}d\Omega_{\gamma}} = \frac{\mu^2}{4\pi^2(\hbar c)c^2} \frac{e^2}{E_{\gamma}} \left| \int_{-\infty}^{\infty} dt \quad \left[\hat{\mathbf{n}} \times \ddot{\mathbf{x}} \right] e^{-i\omega t} \left(\frac{z_1}{m_1} e^{i(\omega/c)(\mu/m_1)\hat{\mathbf{n}} \cdot \mathbf{x}} - \frac{z_2}{m_2} e^{-i(\omega/c)(\mu/m_2)\hat{\mathbf{n}} \cdot \mathbf{x}} \right) \right|^2$$

Motion of the fragments can be determined by solving the equation for the two particles under the influence of a repulsive coulomb potential

$$\frac{1}{2}\mu\dot{r}^2 + \frac{k}{r} = E$$

$$\ddot{x} = \frac{k}{\mu r^2}$$

 μ is the reduced mass

$$k = z_1 z_2 e^2$$

r is the relative velocity

E is the energy of the system

$$t(r) = \left\{ \sqrt{\frac{\mu}{2E}} \left[\sqrt{r^2 - \frac{kr}{E}} + \frac{k}{2E} \ln \left(\left(r - \frac{k}{2E} \right) + \sqrt{r^2 - \frac{kr}{E}} \right) \right] \right\}_{r_{\min}}^r$$

$$R_{min} = Z_1 Z_2 e^2 / E$$

Pre-scission kinetic energy = 25-30 MeV

Conservation of Energy $(1 - \hbar \omega / E)$

Emission probablity of the bremsstrahlung photons very small.

High Energy Photons from ²⁵²Cf

Coherent Bremsstrahlung emission observed for the first time up to 80 MeV

-- from the Coulomb accelerated fission fragments from spontaneous fission of ²⁵²Cf

The spectrometer LAMBDA is capable of measuring photons up to ~ 200 MeV with very good efficiency for full energy

Classical bremsstrahlung considering the pre-scission kinetic energies of the fission fragments

Physics Letters B 690 (2010) 473

Also verified by another group later by detecting neutrons in coincidence.

Next Day

Part-II

Fission & Giant Dipole Resonance

Sudhee R. Banerjee VECC

Dissipative Fission Dynamics

Fundamental nuclear property - viscosity of nuclear matter & its dependence on T

Transport properties of viscous nuclear matter - mass flow in fission process

```
Fission process -- Tunnelling through barrier
```

-- Crossing over the barrier

```
Time scale of fission -- 1. Flux build-up inside barrier \sim 20 \times 10^{-21} \, \text{s} for
```

- 2. Flow across the barrier
 3. Saddle to scission motion ~ 3 x 10 -21 s
 in non-viscous fission procession

fission process

Any dissipation inside or outside saddle -- lengthens these times -- slower fission

```
Clocks for measuring fission time scale -- pre-scission neutron multiplicity
```

-- pre-scission GDR gamma-decay

GDR as clock

High energy gamma-rays are emitted from the decay of Giant Dipole Resonance

$$F(E_{\gamma}) = 2.09 \times 10^{-5} \frac{NZ}{A} \cdot S \cdot \frac{\Gamma_{\text{GDR}} E_{\gamma}^4}{(E_{\gamma}^2 - E_{\text{GDR}}^2)^2 + \Gamma_{\text{GDR}}^2 E_{\gamma}^2}$$

GDR decay photons are emitted at the very early stages of CN decay

- advantages
- GDR clock has several -- 1. Simplicity of GDR strength function and absence of truly free parameter
 - 2. GDR vibration is much faster than fission time scales
 - 3. Sensitivity to deformation (GDR strength fn. & gamma-fission ang corr.)

Fission Time Scale & Dissipation

Approach: Fokker-Plank eqn – describes evolution of collective coordinates through phase space with dissipation coeff. $\eta = \beta m \ (\beta - \text{red. diff. coeff. In units of } 10^{21} \, \text{s}^{-1})$

Also, we can define η from Einstein's eqn. for Diffusion const. D = η T

We also define, $\gamma = \beta/2\omega$ as nuclear friction coeff. (dimensionless, natural scale) where, ω describes oscillation damping in inverted oscillator

 $\gamma = 1 - Critical damping$

< 1 – Under-damped

> 1 – Over-damped

Presence of dissipation influences the fission process and also the particle and gamma emission

Deformation

Effects of dissipation

Enhanced emission of particles & gamma-rays -- in three regions

1. Inside the saddle Fission width is given by $\Gamma_f(t) = \Gamma_f^0 [1 - \exp(-t/\tau_D)]$

 $au_{\rm D}$ is the fission delay time – allows for enhanced emission For over-damped situation $au_{\rm D} = \gamma_i \, / \, \omega_1 \, \ln(10 E_{bf} \, / T)$

2. At the saddle
$$\Gamma_f^{Kramers} = \Gamma_f^{BW} (\sqrt{(1+\gamma^2)} - \gamma)$$
 $\gamma = \beta/2\omega_2$

Typically, ω_1 = ω_2 $\Gamma_{\rm f}^0$ \rightarrow is replaced by $\Gamma_{\rm f}^{\it Kramers}$ Further reduction in fission width - enhances particle & gamma-rays from the interior

3. Saddle to Scission
$$au_{ssc} = au^0_{ssc} (\sqrt{1 + {\gamma_0}^2} + {\gamma_0})$$

 γ_0 is the friction outside barrier, $\tau_{\rm ssc}^0$ = 3 x 10⁻²¹ s, is the undamped time constant

Introduction of dissipation reduces the fission widths – fission process slows down GDR decay photons & particles get more time to escape – enhanced emission Consistent with experimental data

Experimental method

Measure GDR decay photons, fission fragments and/or ang. mom.

We have already seen

$$\tau_f = (\gamma/\omega_1) \ln(10.E_{bf}/T)$$

 γ = 10 corresponds to a Fission delay time of 6.4 x 10 ⁻¹⁹ sec Averaged over all decay steps.

Important to note:

Fission is hindered, but total fission probability is conserved.

Energy dependence of dissipation

Enhanced GDR emission

Statistical model fit with non-dissipative fission

Energy dependence of dissipation

What next

As excitation energy increases – Dissipation increases – still slower fission Can be used to populate & study (GDR decay) near SHE at high excitation

Very heavy nuclei [Z > 105, A > 250] may be populated at high excitation and their GDR characteristics studied ($T \sim 2.5 - 3$ MeV)

These are highly fissile systems

At still higher excitation fission further hindered, so that,

- --- Prefission GDR y emission competes with fission,
- --- possible to see GDR decay photons cleanly (using difference method)

